Divergent responses to SARS-CoV-2 infection in bronchial epithelium with pre-existing respiratory diseases
Summary: Pre-existing respiratory diseases may influence coronavirus disease (COVID-19) susceptibility and severity. However, the molecular mechanisms underlying the airway epithelial response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity in patients with chronic...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-03-01
|
| Series: | iScience |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225002597 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Pre-existing respiratory diseases may influence coronavirus disease (COVID-19) susceptibility and severity. However, the molecular mechanisms underlying the airway epithelial response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity in patients with chronic respiratory diseases remain unelucidated. Using an in vitro model of differentiated primary bronchial epithelial cells, we aimed to investigate the molecular mechanisms of SARS-CoV-2 infection in pre-existing cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Our study revealed reduced susceptibility of CF and COPD airway epithelia to SARS-CoV-2, relative to that in healthy controls. Mechanistically, reduced transmembrane serine protease 2 (TMPRSS2) activity potentially contributed to this resistance of CF epithelium. Upregulated complement and inflammatory pathways in CF and COPD epithelia potentially primed the antiviral state prior to infection. Analysis of a COVID-19 patient cohort validated our findings, correlating specific inflammatory markers (IP-10, SERPINA1, and CFB) with COVID-19 severity. This study elucidates SARS-CoV-2 pathogenesis and identifies potential biomarkers for clinical monitoring. |
|---|---|
| ISSN: | 2589-0042 |