Interlayer interaction and Davydov splitting in antiferromagnetic few-layer NiPS3
Abstract Interlayer interactions in few-layer NiPS3 were investigated by analyzing low-frequency interlayer vibration modes and Davydov splitting of an intralayer, A1g vibration mode at ~255 cm–1 by Raman spectroscopy as a function of temperature. The interlayer force constants were estimated from t...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-06-01
|
| Series: | npj Quantum Materials |
| Online Access: | https://doi.org/10.1038/s41535-025-00788-x |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Interlayer interactions in few-layer NiPS3 were investigated by analyzing low-frequency interlayer vibration modes and Davydov splitting of an intralayer, A1g vibration mode at ~255 cm–1 by Raman spectroscopy as a function of temperature. The interlayer force constants were estimated from the low-frequency Raman spectra by using the linear chain model. The out-of-plane direction interlayer force constant could also be estimated separately from the Davydov splitting, which agrees well with the linear chain model analysis. The dependence of the low-frequency shear and breathing modes and the Davydov splitting on the number of layers provide a unique, reliable tool for determining the number of layers. |
|---|---|
| ISSN: | 2397-4648 |