Rational Design of an Epidermal Growth Factor Receptor Vaccine: Immunogenicity and Antitumor Research

The epidermal growth factor receptor (EGFR) is frequently overexpressed in a variety of human epithelial tumors, and its aberrant activation plays a pivotal role in promoting tumor growth, invasion, and metastasis. The clinically approved passive EGFR-related therapies have numerous limitations. Sev...

Full description

Saved in:
Bibliographic Details
Main Authors: Yifei Liu, Zehui Liu, Zhongliang Zheng
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/14/12/1620
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The epidermal growth factor receptor (EGFR) is frequently overexpressed in a variety of human epithelial tumors, and its aberrant activation plays a pivotal role in promoting tumor growth, invasion, and metastasis. The clinically approved passive EGFR-related therapies have numerous limitations. Seven EGFR-ECD epitope peptides (EG1-7) were selected through bioinformatics epitope prediction tools including NetMHCpan-4.1, NetMHCIIpan-3.2, and IEDB Consensus (v2.18 and v2.22) and fused to the translocation domain of diphtheria toxin (DTT). The A549 tumor model was successfully established in a murine mouse model. The vaccine was formulated by combining the adjuvants Alum and CpG and subsequently assessed for its immunogenicity and anti-tumor efficacy. DTT-EG (3;5;6;7) vaccines elicited specific humoral and cellular immune responses and effectively suppressed tumor growth in both prophylactic and therapeutic mouse tumor models. The selected epitopes EG3 (HGAVRFSNNPALCNV145-159), EG5 (KDSLSINATNIKHFK346-360), EG6 (VKEITGFLLIQAWPE398-412), and EG7 (LCYANTINWKKLFGT469-483) were incorporated into vaccines for active immunization, representing a promising strategy for the treatment of tumors with overexpressed epidermal growth factor receptor (EGFR). The vaccine design and fusion method employed in this study demonstrate a viable approach toward the development of cancer vaccines.
ISSN:2218-273X