A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic Implants

The main objective of this study is to present a fundamental mathematical model for nerve impulse transport, based on the underlying physical phenomena, with a straightforward application in describing the functionality of prosthetic devices. The governing equation of the resultant model is a two-di...

Full description

Saved in:
Bibliographic Details
Main Authors: Zaffar Mehdi Dar, Chandru Muthusamy, Higinio Ramos
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/6/398
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849418224901292032
author Zaffar Mehdi Dar
Chandru Muthusamy
Higinio Ramos
author_facet Zaffar Mehdi Dar
Chandru Muthusamy
Higinio Ramos
author_sort Zaffar Mehdi Dar
collection DOAJ
description The main objective of this study is to present a fundamental mathematical model for nerve impulse transport, based on the underlying physical phenomena, with a straightforward application in describing the functionality of prosthetic devices. The governing equation of the resultant model is a two-dimensional nonlinear partial differential equation with a time-fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. novel and effective numerical approach for solving this fractional-order problem is constructed based on the virtual element method. Three basic technical building blocks form the basis of our methodology: the regularity theory related to nonlinearity, discrete maximal regularity, and a fractional variant of the Grünwald–Letnikov approximation. By utilizing these components, along with the energy projection operator, a fully discrete virtual element scheme is formulated in such a way that it ensures stability and consistency. We establish the uniqueness and existence of the approximate solution. Numerical findings confirm the convergence in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>–norm and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula>–norm on both uniform square and regular Voronoi meshes, confirming the effectiveness of the proposed model and method, and their potential to support the efficient design of sensory prosthetics.
format Article
id doaj-art-07c5ffe2d0c3471eb7686c4b610d9f9b
institution Kabale University
issn 2075-1680
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-07c5ffe2d0c3471eb7686c4b610d9f9b2025-08-20T03:32:31ZengMDPI AGAxioms2075-16802025-05-0114639810.3390/axioms14060398A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic ImplantsZaffar Mehdi Dar0Chandru Muthusamy1Higinio Ramos2Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, IndiaDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, IndiaScientific Computing Group, University of Salamanca, Plaza de la Merced, 37008 Salamanca, SpainThe main objective of this study is to present a fundamental mathematical model for nerve impulse transport, based on the underlying physical phenomena, with a straightforward application in describing the functionality of prosthetic devices. The governing equation of the resultant model is a two-dimensional nonlinear partial differential equation with a time-fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. novel and effective numerical approach for solving this fractional-order problem is constructed based on the virtual element method. Three basic technical building blocks form the basis of our methodology: the regularity theory related to nonlinearity, discrete maximal regularity, and a fractional variant of the Grünwald–Letnikov approximation. By utilizing these components, along with the energy projection operator, a fully discrete virtual element scheme is formulated in such a way that it ensures stability and consistency. We establish the uniqueness and existence of the approximate solution. Numerical findings confirm the convergence in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>–norm and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>1</mn></msup></semantics></math></inline-formula>–norm on both uniform square and regular Voronoi meshes, confirming the effectiveness of the proposed model and method, and their potential to support the efficient design of sensory prosthetics.https://www.mdpi.com/2075-1680/14/6/398virtual element methodimpulse transportGrünwald–Letnikov approximationprojection operatorfractional-orderSobolev space
spellingShingle Zaffar Mehdi Dar
Chandru Muthusamy
Higinio Ramos
A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic Implants
Axioms
virtual element method
impulse transport
Grünwald–Letnikov approximation
projection operator
fractional-order
Sobolev space
title A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic Implants
title_full A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic Implants
title_fullStr A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic Implants
title_full_unstemmed A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic Implants
title_short A Fractional PDE-Based Model for Nerve Impulse Transport Solved Using a Conforming Virtual Element Method: Application to Prosthetic Implants
title_sort fractional pde based model for nerve impulse transport solved using a conforming virtual element method application to prosthetic implants
topic virtual element method
impulse transport
Grünwald–Letnikov approximation
projection operator
fractional-order
Sobolev space
url https://www.mdpi.com/2075-1680/14/6/398
work_keys_str_mv AT zaffarmehdidar afractionalpdebasedmodelfornerveimpulsetransportsolvedusingaconformingvirtualelementmethodapplicationtoprostheticimplants
AT chandrumuthusamy afractionalpdebasedmodelfornerveimpulsetransportsolvedusingaconformingvirtualelementmethodapplicationtoprostheticimplants
AT higinioramos afractionalpdebasedmodelfornerveimpulsetransportsolvedusingaconformingvirtualelementmethodapplicationtoprostheticimplants
AT zaffarmehdidar fractionalpdebasedmodelfornerveimpulsetransportsolvedusingaconformingvirtualelementmethodapplicationtoprostheticimplants
AT chandrumuthusamy fractionalpdebasedmodelfornerveimpulsetransportsolvedusingaconformingvirtualelementmethodapplicationtoprostheticimplants
AT higinioramos fractionalpdebasedmodelfornerveimpulsetransportsolvedusingaconformingvirtualelementmethodapplicationtoprostheticimplants