Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequ...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/15/4879 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. |
|---|---|
| ISSN: | 1424-8220 |