An Inverse Piecewise Flow Curve Determination Method for Torsion Tests at Elevated Temperature

This paper presents an extended method for determining flow curves under shear loading using torsion tests, a technique often used to characterize plastic behavior in metal forming. Torsion tests are advantageous due to their ability to achieve flow curves up to large strains (~3) while maintaining...

Full description

Saved in:
Bibliographic Details
Main Authors: Aditya Vuppala, Holger Brüggemann, David Bailly, Emad Scharifi
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/2/219
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an extended method for determining flow curves under shear loading using torsion tests, a technique often used to characterize plastic behavior in metal forming. Torsion tests are advantageous due to their ability to achieve flow curves up to large strains (~3) while maintaining stable specimen geometry during deformation. However, the strain and strain rate distribution across the specimen are non-uniform, increasing radially from the rotation axis. Traditional analytical methods, such as the Fields and Backofen approach, address this non-uniformity by considering average strain and strain rates. Conversely, inverse approaches, which rely on fitting constitutive equations through iterative procedures, are more sensitive to the choice of empirical equations and can be computationally expensive. To address these issues, this study adapts an inverse piecewise flow curve determination method from compression tests for use in torsion tests. A stepwise methodology is proposed to calculate constant strain rates and isothermal flow curves, where flow curves for the lowest strain rates are first determined and subsequently used to derive flow curves at higher strain rates. The proposed approach was applied to the case-hardened steel 16MnCrS5, with tests conducted at temperatures ranging from 900 °C to 1100 °C and strain rates from 0.01 s<sup>−1</sup> to 1 s<sup>−1</sup>. The experimental data obtained were successfully replicated by the flow curves with a maximum deviation of only 1%. The results demonstrate the efficiency and accuracy of the stepwise inverse approach for determining flow curves in torsion tests, making it appropriate for characterizing material behavior for metal-forming applications.
ISSN:2075-4701