Dual Circularly Polarized Bow-Tie-Shaped Stacked Yagi-Uda Antenna Arrays for Internet of Things Applications
This paper presents the design and analysis of two dual circularly polarized stacked Yagi-Uda antenna arrays, referred to as Type A and Type B. The proposed Type A Yagi-Uda antenna array consists of four printed bow-tie-shaped elements arranged at different angles: a director, a reflector, and two o...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10896653/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents the design and analysis of two dual circularly polarized stacked Yagi-Uda antenna arrays, referred to as Type A and Type B. The proposed Type A Yagi-Uda antenna array consists of four printed bow-tie-shaped elements arranged at different angles: a director, a reflector, and two orthogonal driven elements. The driven elements are connected to coaxial cables via LC baluns. The Type B configuration introduces a complementary slotted bow-tie director element in place of the printed one, while the driven and reflector elements remain unchanged. Exciting the upper driven element generates right-hand circular polarization (RHCP), whereas left-hand circular polarization (LHCP) is achieved when the lower driven element is excited. Both proposed antenna arrays share the same dimensions of <inline-formula> <tex-math notation="LaTeX">$0.39\lambda _{0} \times 0.39\lambda _{0} \times 0.27\lambda _{0}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\lambda _{0}$ </tex-math></inline-formula> represents the free-space wavelength at the operating frequency of 2.45 GHz. Measured results confirm that Type B outperforms Type A in several aspects. The Type B antenna array achieves a fractional impedance bandwidth of 8%, a 3-dB axial ratio (AR) bandwidth of 19.6%, and a peak gain of 4.49 dBic. In comparison, Type A exhibits a fractional impedance bandwidth of 2.45%, a 3-dB axial ratio bandwidth of 2.45%, and a peak gain of 3.5 dBic. These findings highlight the effectiveness of the complementary slotted bow-tie director in enhancing antenna performance, making Type B a promising candidate for Internet of Things (IoT) applications. |
|---|---|
| ISSN: | 2169-3536 |