Mathematical Model of Nicholson’s Experiment

Considered  is a mathematical model of insects  population dynamics,  and  an attempt is made  to explain  classical experimental results  of Nicholson with  its help.  In the  first section  of the paper  Nicholson’s experiment is described  and dynamic  equations  for its modeling are chosen.  A p...

Full description

Saved in:
Bibliographic Details
Main Author: Sergey D. Glyzin
Format: Article
Language:English
Published: Yaroslavl State University 2017-06-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/525
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849338889553051648
author Sergey D. Glyzin
author_facet Sergey D. Glyzin
author_sort Sergey D. Glyzin
collection DOAJ
description Considered  is a mathematical model of insects  population dynamics,  and  an attempt is made  to explain  classical experimental results  of Nicholson with  its help.  In the  first section  of the paper  Nicholson’s experiment is described  and dynamic  equations  for its modeling are chosen.  A priori estimates  for model parameters can be made more precise by means of local analysis  of the  dynamical system,  that is carried  out in the second section.  For parameter values found there  the stability loss of the  problem  equilibrium  of the  leads to the  bifurcation of a stable  two-dimensional torus.   Numerical simulations  based  on the  estimates  from the  second section  allows to explain  the  classical Nicholson’s experiment, whose detailed  theoretical substantiation is given in the last section.  There for an atrractor of the  system  the  largest  Lyapunov  exponent is computed. The  nature of this  exponent change allows to additionally narrow  the area of model parameters search.  Justification of this experiment was made possible  only  due  to  the  combination of analytical and  numerical  methods  in studying  equations  of insects  population dynamics.   At the  same time,  the  analytical approach made  it possible to perform numerical  analysis  in a rather narrow  region of the  parameter space.  It is not  possible to get into this area,  based only on general considerations.
format Article
id doaj-art-078976950a9f466dbdf0d0e1a15aa515
institution Kabale University
issn 1818-1015
2313-5417
language English
publishDate 2017-06-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj-art-078976950a9f466dbdf0d0e1a15aa5152025-08-20T03:44:17ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172017-06-0124336538610.18255/1818-1015-2017-3-365-386375Mathematical Model of Nicholson’s ExperimentSergey D. Glyzin0P.G. Demidov Yaroslavl State University; Scientific Center in Chernogolovka RASConsidered  is a mathematical model of insects  population dynamics,  and  an attempt is made  to explain  classical experimental results  of Nicholson with  its help.  In the  first section  of the paper  Nicholson’s experiment is described  and dynamic  equations  for its modeling are chosen.  A priori estimates  for model parameters can be made more precise by means of local analysis  of the  dynamical system,  that is carried  out in the second section.  For parameter values found there  the stability loss of the  problem  equilibrium  of the  leads to the  bifurcation of a stable  two-dimensional torus.   Numerical simulations  based  on the  estimates  from the  second section  allows to explain  the  classical Nicholson’s experiment, whose detailed  theoretical substantiation is given in the last section.  There for an atrractor of the  system  the  largest  Lyapunov  exponent is computed. The  nature of this  exponent change allows to additionally narrow  the area of model parameters search.  Justification of this experiment was made possible  only  due  to  the  combination of analytical and  numerical  methods  in studying  equations  of insects  population dynamics.   At the  same time,  the  analytical approach made  it possible to perform numerical  analysis  in a rather narrow  region of the  parameter space.  It is not  possible to get into this area,  based only on general considerations.https://www.mais-journal.ru/jour/article/view/525differential-difference equationsasymptotic behaviourstabilitylyapunov exponentsinsect population dynamics
spellingShingle Sergey D. Glyzin
Mathematical Model of Nicholson’s Experiment
Моделирование и анализ информационных систем
differential-difference equations
asymptotic behaviour
stability
lyapunov exponents
insect population dynamics
title Mathematical Model of Nicholson’s Experiment
title_full Mathematical Model of Nicholson’s Experiment
title_fullStr Mathematical Model of Nicholson’s Experiment
title_full_unstemmed Mathematical Model of Nicholson’s Experiment
title_short Mathematical Model of Nicholson’s Experiment
title_sort mathematical model of nicholson s experiment
topic differential-difference equations
asymptotic behaviour
stability
lyapunov exponents
insect population dynamics
url https://www.mais-journal.ru/jour/article/view/525
work_keys_str_mv AT sergeydglyzin mathematicalmodelofnicholsonsexperiment