Zoning of the Disaster-Inducing Environment and Driving Factors for Landslides, Collapses, and Debris Flows on the Qinghai–Tibet Plateau
The Qinghai–Tibet Plateau is one of the most geologically active regions in the world, characterized by significant geomorphic variation and a wide range of geological hazards. The multifactorial coupling of tectonic movements, geomorphological evolution, climate variability, and lithological charac...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/12/6569 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Qinghai–Tibet Plateau is one of the most geologically active regions in the world, characterized by significant geomorphic variation and a wide range of geological hazards. The multifactorial coupling of tectonic movements, geomorphological evolution, climate variability, and lithological characteristics contributes to the pronounced spatial heterogeneity of the disaster-inducing environment. Identifying key controlling factors and their driving mechanisms is crucial for effective regional disaster prevention and mitigation. This study adopts a systematic framework based on regional disaster systems theory, integrating tectonic activity, engineering geology, topography, and precipitation to construct a multi-factor zoning system. Using the Random Forest model, we quantify factor contributions and delineate eight distinct disaster-inducing environment zones. Zones I–III (Himalayas–Hengduan Mountains–Qilian Mountains) are characterized by a dominant coupling mechanism of “tectonic fragmentation—topographic relief—precipitation erosion” and account for the majority of large-scale disasters. In contrast, Zones IV–VIII, primarily located in the central–western Plateau basins, are constrained by limited material sources, resulting in lower disaster densities. The findings indicate that geological structures and lithological fragmentation provide the material foundation for hazard occurrence, while topographic potential and hydrodynamic forces serve as critical triggering conditions. This nonlinear coupling of factors shapes a disaster geographic pattern characterized by “dense in the east and sparse in the west”. Based on these results, the targeted recommendations proposed offer valuable theoretical insights and methodological guidance for disaster mitigation and region-specific management across the Qinghai–Tibet Plateau. |
|---|---|
| ISSN: | 2076-3417 |