A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape

<p>Strontium isotopes (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><...

Full description

Saved in:
Bibliographic Details
Main Authors: P. de Caritat, A. Dosseto, F. Dux
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/17/79/2025/essd-17-79-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841526999499145216
author P. de Caritat
P. de Caritat
A. Dosseto
F. Dux
author_facet P. de Caritat
P. de Caritat
A. Dosseto
F. Dux
author_sort P. de Caritat
collection DOAJ
description <p>Strontium isotopes (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7f4baae305f328d12fa7f61ee32c1202"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00001.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00001.png"/></svg:svg></span></span>) are widely used tracers in the geosciences. Here we exploit an opportunity to determine <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fc572d0bea75b4287a5b3ee79eca9f85"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00002.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00002.png"/></svg:svg></span></span> ratios on archived fluvial sediment samples from the low-density National Geochemical Survey of Australia (NGSA). The present study targeted the Yilgarn Craton in southwestern Australia. In total, 107 samples were taken from a depth of <span class="inline-formula">∼</span> 60–80 cm in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse (<span class="inline-formula">&lt;</span> 2 mm) grain-size fraction was air-dried, sieved, milled, and then digested (hydrofluoric acid and nitric acid, followed by aqua regia) to release total Sr. The Sr was then separated by chromatography and its <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e22ae2ee47cc1ea64b1ec348ae40208d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00003.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00003.png"/></svg:svg></span></span> ratio determined by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Results demonstrate a wide range of quite elevated Sr isotopic values (0.7152 to 1.0909, with a median of 0.7560) over the survey area, reflecting a large diversity of source rock lithologies, geological processes, and bedrock ages. The spatial distribution of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a97dd5d5ad53911d125562a9ee29d24d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00004.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00004.png"/></svg:svg></span></span> shows coherent (multi-point anomalies and smooth gradients) large-scale (<span class="inline-formula">&gt;</span> 100 km) patterns that appear to be broadly consistent with surface geology, regolith/soil type, and/or nearby outcropping bedrock. The most radiogenic sediment values in the Yilgarn region (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5260b111447fe6189885d1843a512fbf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00005.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00005.png"/></svg:svg></span></span> <span class="inline-formula">&gt;</span> 0.8) all come from sites underlain by Archaean bedrock (2500–4000 Ma) and almost exclusively felsic intrusive lithologies. Conversely, almost all sites underlain by younger and non-granitic bedrock have outlet sediments of a less radiogenic character (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="395bd4779ea7edb24c266694c8e7734d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00006.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00006.png"/></svg:svg></span></span> <span class="inline-formula">&lt;</span> 0.8). Sampling sites underlain by mafic and ultramafic bedrock yield unradiogenic Sr sediment signatures despite their Archaean age. Several sediment <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="25a89f7d431e088bd307521c30406ca6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00007.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00007.png"/></svg:svg></span></span> results were validated by comparison to previously published whole-rock data from their catchment for both unradiogenic and radiogenic cases. The new Sr isotopic data are also interrogated in terms of the mineral occurrences (i.e. mineral deposits and/or operating mines) found in their catchment. Several catchments containing mineral resources across a range of commodities stand out as high-<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fef97a353234dc7f2e8249054738748d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00008.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00008.png"/></svg:svg></span></span> outliers (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b15b20bdf743f7fd52e15b626449e320"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00009.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00009.png"/></svg:svg></span></span> <span class="inline-formula">&gt;</span> 0.8), whilst over half of the registered mineral resources come from an intermediate, yet still elevated, catchment sediment <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="d84d9178998f432e013c66f081dd664b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00010.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00010.png"/></svg:svg></span></span> range (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f05f1fcb7ddd0bc765b0b1cada09fe9b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00011.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00011.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.728–0.767). Avenues for future work are proposed, including a national-scale Sr isoscape for Australia. Such an isoscape could be useful in future geological, forensic, archaeological, palaeontological, and ecological studies. The new spatial Sr isotope dataset for the southwestern Australia region is publicly available (de Caritat et al., 2024; <a href="https://doi.org/10.26186/149755">https://doi.org/10.26186/149755</a>).</p>
format Article
id doaj-art-07571297629f4ea5a4e97f358a75bb68
institution Kabale University
issn 1866-3508
1866-3516
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Earth System Science Data
spelling doaj-art-07571297629f4ea5a4e97f358a75bb682025-01-16T07:45:09ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162025-01-0117799310.5194/essd-17-79-2025A strontium isoscape of southwestern Australia and progress toward a national strontium isoscapeP. de Caritat0P. de Caritat1A. Dosseto2F. Dux3Geoscience Australia, GPO Box 378, Canberra, ACT 2601, AustraliaJohn de Laeter Centre, Curtin University, Bentley, WA 6845, AustraliaWollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, AustraliaWollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia<p>Strontium isotopes (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7f4baae305f328d12fa7f61ee32c1202"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00001.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00001.png"/></svg:svg></span></span>) are widely used tracers in the geosciences. Here we exploit an opportunity to determine <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fc572d0bea75b4287a5b3ee79eca9f85"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00002.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00002.png"/></svg:svg></span></span> ratios on archived fluvial sediment samples from the low-density National Geochemical Survey of Australia (NGSA). The present study targeted the Yilgarn Craton in southwestern Australia. In total, 107 samples were taken from a depth of <span class="inline-formula">∼</span> 60–80 cm in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse (<span class="inline-formula">&lt;</span> 2 mm) grain-size fraction was air-dried, sieved, milled, and then digested (hydrofluoric acid and nitric acid, followed by aqua regia) to release total Sr. The Sr was then separated by chromatography and its <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e22ae2ee47cc1ea64b1ec348ae40208d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00003.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00003.png"/></svg:svg></span></span> ratio determined by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Results demonstrate a wide range of quite elevated Sr isotopic values (0.7152 to 1.0909, with a median of 0.7560) over the survey area, reflecting a large diversity of source rock lithologies, geological processes, and bedrock ages. The spatial distribution of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a97dd5d5ad53911d125562a9ee29d24d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00004.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00004.png"/></svg:svg></span></span> shows coherent (multi-point anomalies and smooth gradients) large-scale (<span class="inline-formula">&gt;</span> 100 km) patterns that appear to be broadly consistent with surface geology, regolith/soil type, and/or nearby outcropping bedrock. The most radiogenic sediment values in the Yilgarn region (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5260b111447fe6189885d1843a512fbf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00005.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00005.png"/></svg:svg></span></span> <span class="inline-formula">&gt;</span> 0.8) all come from sites underlain by Archaean bedrock (2500–4000 Ma) and almost exclusively felsic intrusive lithologies. Conversely, almost all sites underlain by younger and non-granitic bedrock have outlet sediments of a less radiogenic character (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="395bd4779ea7edb24c266694c8e7734d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00006.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00006.png"/></svg:svg></span></span> <span class="inline-formula">&lt;</span> 0.8). Sampling sites underlain by mafic and ultramafic bedrock yield unradiogenic Sr sediment signatures despite their Archaean age. Several sediment <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="25a89f7d431e088bd307521c30406ca6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00007.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00007.png"/></svg:svg></span></span> results were validated by comparison to previously published whole-rock data from their catchment for both unradiogenic and radiogenic cases. The new Sr isotopic data are also interrogated in terms of the mineral occurrences (i.e. mineral deposits and/or operating mines) found in their catchment. Several catchments containing mineral resources across a range of commodities stand out as high-<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fef97a353234dc7f2e8249054738748d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00008.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00008.png"/></svg:svg></span></span> outliers (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="b15b20bdf743f7fd52e15b626449e320"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00009.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00009.png"/></svg:svg></span></span> <span class="inline-formula">&gt;</span> 0.8), whilst over half of the registered mineral resources come from an intermediate, yet still elevated, catchment sediment <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="d84d9178998f432e013c66f081dd664b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00010.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00010.png"/></svg:svg></span></span> range (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f05f1fcb7ddd0bc765b0b1cada09fe9b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-17-79-2025-ie00011.svg" width="49pt" height="15pt" src="essd-17-79-2025-ie00011.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.728–0.767). Avenues for future work are proposed, including a national-scale Sr isoscape for Australia. Such an isoscape could be useful in future geological, forensic, archaeological, palaeontological, and ecological studies. The new spatial Sr isotope dataset for the southwestern Australia region is publicly available (de Caritat et al., 2024; <a href="https://doi.org/10.26186/149755">https://doi.org/10.26186/149755</a>).</p>https://essd.copernicus.org/articles/17/79/2025/essd-17-79-2025.pdf
spellingShingle P. de Caritat
P. de Caritat
A. Dosseto
F. Dux
A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape
Earth System Science Data
title A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape
title_full A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape
title_fullStr A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape
title_full_unstemmed A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape
title_short A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape
title_sort strontium isoscape of southwestern australia and progress toward a national strontium isoscape
url https://essd.copernicus.org/articles/17/79/2025/essd-17-79-2025.pdf
work_keys_str_mv AT pdecaritat astrontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape
AT pdecaritat astrontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape
AT adosseto astrontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape
AT fdux astrontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape
AT pdecaritat strontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape
AT pdecaritat strontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape
AT adosseto strontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape
AT fdux strontiumisoscapeofsouthwesternaustraliaandprogresstowardanationalstrontiumisoscape