Tumor-Colonizing <i>E. coli</i> Expressing Both Collagenase and Hyaluronidase Enhances Therapeutic Efficacy of Gemcitabine in Pancreatic Cancer Models

Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing <i>E....

Full description

Saved in:
Bibliographic Details
Main Authors: Lara C. Avsharian, Suvithanandhini Loganathan, Nancy D. Ebelt, Azadeh F. Shalamzari, Itzel Rodarte Muñoz, Edwin R. Manuel
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/14/11/1458
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing <i>E. coli</i>-based agent that expresses both collagenase and hyaluronidase as a strategy to reduce desmoplasia and enhance the intratumoral perfusion of anticancer agents. Overall, we observed that the tandem expression of both these enzymes by tumor-colonizing <i>E. coli</i> resulted in the reduced presence of intratumoral collagen and hyaluronan, which likely contributed to the enhanced chemotherapeutic efficacy observed when used in combination. These results highlight the importance of combination treatments involving the depletion of desmoplastic components in PDAC before or during treatment.
ISSN:2218-273X