Enhancing Optoelectronic Properties of Multicrystalline Silicon Using Dual Treatments for Solar Cell Applications
Surface texturing is vital for enhancing light absorption and optimizing the optoelectronic properties of multicrystalline silicon (mc-Si) samples. Texturing significantly improves light absorption by minimizing reflectance and extending the effective path length of incident light. Furthermore, poro...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Inorganics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6740/13/5/142 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Surface texturing is vital for enhancing light absorption and optimizing the optoelectronic properties of multicrystalline silicon (mc-Si) samples. Texturing significantly improves light absorption by minimizing reflectance and extending the effective path length of incident light. Furthermore, porous silicon treatment on textured mc-Si surfaces offers additional advantages, including enhanced carrier generation, reduced surface recombination, and improved light emission. In this study, a dual treatment combining porous silicon and texturing was employed as an effective approach to enhance the optical and optoelectronic properties of mc-Si. Both porous silicon and texturing were achieved through a chemical etching process. After these surface modifications, the morphology and structure of mc-Si were examined using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), UV-Vis-IR spectroscopy, photoluminescence (PL), WCT-120 photo-conductance lifetime measurements, and Two-Internal Quantum Efficiency (IQE) analysis. The results reveal a substantial improvement in the material’s properties. The total reflectivity dropped from 35% to approximately 5%, while the effective minority carrier lifetime increased from 2 µs for bare mc-Si to 36 µs after treatment. Additionally, the two-dimensional IQE value rose from 35% for the untreated sample to 66% after treatment, representing an enhancement of around 31%. These findings highlight the potential of surface engineering techniques in optimizing mc-Si for photovoltaic applications. |
|---|---|
| ISSN: | 2304-6740 |