Reactivatable stimulated emission depletion microscopy using fluorescence-recoverable nanographene

Abstract Stimulated emission depletion (STED) microscopy, a key optical super-resolution imaging method, has extended our ability to view details to resolution levels of tens of nanometers. Its resolution depends on fluorophore de-excitation efficiency, and increases with depletion laser power. Howe...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiqi Yang, Antonio Virgilio Failla, Petri Turunen, Ana Mateos-Maroto, Meiyu Gai, Werner Zuschratter, Sophia Westendorf, Márton Gelléri, Qiang Chen, Goudappagouda, Hao Zhao, Xingfu Zhu, Svenja Morsbach, Marcus Scheele, Wei Yan, Katharina Landfester, Ryota Kabe, Mischa Bonn, Akimitsu Narita, Xiaomin Liu
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56401-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Stimulated emission depletion (STED) microscopy, a key optical super-resolution imaging method, has extended our ability to view details to resolution levels of tens of nanometers. Its resolution depends on fluorophore de-excitation efficiency, and increases with depletion laser power. However, high-power irradiation permanently turns off the fluorescence due to photo-bleaching of the fluorophores. As a result, there is a trade-off between spatial resolution and imaging time. Here, we overcome this limitation by introducing reactivatable STED (ReSTED) based on the photophysical properties of the nanographene dibenzo[hi,st]ovalene (DBOV). In contrast to the photo-induced decomposition of other fluorophores, the fluorescence of DBOV is only temporarily deactivated and can be reactivated by near-infrared light (including the 775 nm depletion beam). As a result, this fluorophore allows for hours-long, high-resolution 3D STED imaging, greatly expanding the applications of STED microscopy.
ISSN:2041-1723