Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD) system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsin-Ying Lee, Ting-Chun Wang, Chun-Yen Tseng
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2014/795152
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD) system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD) results, the microcrystalline i-Si films with (111), (220), and (311) diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.
ISSN:1110-662X
1687-529X