Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy

Abstract Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca Mastrantoni, Giovanna Garufi, Giulia Giordano, Noemi Maliziola, Elena Di Monte, Giorgia Arcuri, Valentina Frescura, Angelachiara Rotondi, Armando Orlandi, Luisa Carbognin, Antonella Palazzo, Federica Miglietta, Letizia Pontolillo, Alessandra Fabi, Lorenzo Gerratana, Sergio Pannunzio, Ida Paris, Sara Pilotto, Fabio Marazzi, Antonio Franco, Gianluca Franceschini, Maria Vittoria Dieci, Roberta Mazzeo, Fabio Puglisi, Valentina Guarneri, Michele Milella, Giovanni Scambia, Diana Giannarelli, Giampaolo Tortora, Emilio Bria
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Breast Cancer
Online Access:https://doi.org/10.1038/s41523-025-00727-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861696192577536
author Luca Mastrantoni
Giovanna Garufi
Giulia Giordano
Noemi Maliziola
Elena Di Monte
Giorgia Arcuri
Valentina Frescura
Angelachiara Rotondi
Armando Orlandi
Luisa Carbognin
Antonella Palazzo
Federica Miglietta
Letizia Pontolillo
Alessandra Fabi
Lorenzo Gerratana
Sergio Pannunzio
Ida Paris
Sara Pilotto
Fabio Marazzi
Antonio Franco
Gianluca Franceschini
Maria Vittoria Dieci
Roberta Mazzeo
Fabio Puglisi
Valentina Guarneri
Michele Milella
Giovanni Scambia
Diana Giannarelli
Giampaolo Tortora
Emilio Bria
author_facet Luca Mastrantoni
Giovanna Garufi
Giulia Giordano
Noemi Maliziola
Elena Di Monte
Giorgia Arcuri
Valentina Frescura
Angelachiara Rotondi
Armando Orlandi
Luisa Carbognin
Antonella Palazzo
Federica Miglietta
Letizia Pontolillo
Alessandra Fabi
Lorenzo Gerratana
Sergio Pannunzio
Ida Paris
Sara Pilotto
Fabio Marazzi
Antonio Franco
Gianluca Franceschini
Maria Vittoria Dieci
Roberta Mazzeo
Fabio Puglisi
Valentina Guarneri
Michele Milella
Giovanni Scambia
Diana Giannarelli
Giampaolo Tortora
Emilio Bria
author_sort Luca Mastrantoni
collection DOAJ
description Abstract Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials.
format Article
id doaj-art-071d2ee3b6c24d3ca0260f479dba6d52
institution Kabale University
issn 2374-4677
language English
publishDate 2025-02-01
publisher Nature Portfolio
record_format Article
series npj Breast Cancer
spelling doaj-art-071d2ee3b6c24d3ca0260f479dba6d522025-02-09T12:48:28ZengNature Portfolionpj Breast Cancer2374-46772025-02-0111111310.1038/s41523-025-00727-wAccessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapyLuca Mastrantoni0Giovanna Garufi1Giulia Giordano2Noemi Maliziola3Elena Di Monte4Giorgia Arcuri5Valentina Frescura6Angelachiara Rotondi7Armando Orlandi8Luisa Carbognin9Antonella Palazzo10Federica Miglietta11Letizia Pontolillo12Alessandra Fabi13Lorenzo Gerratana14Sergio Pannunzio15Ida Paris16Sara Pilotto17Fabio Marazzi18Antonio Franco19Gianluca Franceschini20Maria Vittoria Dieci21Roberta Mazzeo22Fabio Puglisi23Valentina Guarneri24Michele Milella25Giovanni Scambia26Diana Giannarelli27Giampaolo Tortora28Emilio Bria29Medical Oncology, Università Cattolica del Sacro CuoreMedical Oncology, Università Cattolica del Sacro CuoreDepartment of Geriatrics, Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario Agostino Gemelli, IRCCSMedical Oncology, Università Cattolica del Sacro CuoreMedical Oncology, Università Cattolica del Sacro CuoreMedical Oncology, Università Cattolica del Sacro CuoreMedical Oncology, Università Cattolica del Sacro CuoreMedical Oncology, Università Cattolica del Sacro CuoreMedical Oncology, Università Cattolica del Sacro CuorePrecision Medicine Breast Unit, Scientific Directorate, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCSMedical Oncology, Università Cattolica del Sacro CuoreMedical Oncology 2, Istituto Oncologico Veneto IOV-IRCCSMedical Oncology, Università Cattolica del Sacro CuorePrecision Medicine Breast Unit, Scientific Directorate, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCSOncologia Medica, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano (PN), Italy University of UdineMedical Oncology, Università Cattolica del Sacro CuorePrecision Medicine Breast Unit, Scientific Directorate, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCSSection of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital TrustUOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCSBreast Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreBreast Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro CuoreMedical Oncology 2, Istituto Oncologico Veneto IOV-IRCCSOncologia Medica, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano (PN), Italy University of UdineOncologia Medica, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano (PN), Italy University of UdineMedical Oncology 2, Istituto Oncologico Veneto IOV-IRCCSSection of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital TrustDepartment of Woman, Child, and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCSBiostatistic, Fondazione Policlinico Universitario Agostino Gemelli IRCCSMedical Oncology, Università Cattolica del Sacro CuoreMedical Oncology, Università Cattolica del Sacro CuoreAbstract Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials.https://doi.org/10.1038/s41523-025-00727-w
spellingShingle Luca Mastrantoni
Giovanna Garufi
Giulia Giordano
Noemi Maliziola
Elena Di Monte
Giorgia Arcuri
Valentina Frescura
Angelachiara Rotondi
Armando Orlandi
Luisa Carbognin
Antonella Palazzo
Federica Miglietta
Letizia Pontolillo
Alessandra Fabi
Lorenzo Gerratana
Sergio Pannunzio
Ida Paris
Sara Pilotto
Fabio Marazzi
Antonio Franco
Gianluca Franceschini
Maria Vittoria Dieci
Roberta Mazzeo
Fabio Puglisi
Valentina Guarneri
Michele Milella
Giovanni Scambia
Diana Giannarelli
Giampaolo Tortora
Emilio Bria
Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
npj Breast Cancer
title Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
title_full Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
title_fullStr Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
title_full_unstemmed Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
title_short Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
title_sort accessible model predicts response in hormone receptor positive her2 negative breast cancer receiving neoadjuvant chemotherapy
url https://doi.org/10.1038/s41523-025-00727-w
work_keys_str_mv AT lucamastrantoni accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT giovannagarufi accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT giuliagiordano accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT noemimaliziola accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT elenadimonte accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT giorgiaarcuri accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT valentinafrescura accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT angelachiararotondi accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT armandoorlandi accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT luisacarbognin accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT antonellapalazzo accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT federicamiglietta accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT letiziapontolillo accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT alessandrafabi accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT lorenzogerratana accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT sergiopannunzio accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT idaparis accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT sarapilotto accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT fabiomarazzi accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT antoniofranco accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT gianlucafranceschini accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT mariavittoriadieci accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT robertamazzeo accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT fabiopuglisi accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT valentinaguarneri accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT michelemilella accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT giovanniscambia accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT dianagiannarelli accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT giampaolotortora accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy
AT emiliobria accessiblemodelpredictsresponseinhormonereceptorpositiveher2negativebreastcancerreceivingneoadjuvantchemotherapy