Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples

This study proposes the development of a dual-wavelength optical fiber sensor (DWOFS) that integrates two optical fiber structures in a multimode transmission line to measure the refractive index and temperature of a liquid concurrently. One structure is based on a refractive index sensor that utili...

Full description

Saved in:
Bibliographic Details
Main Authors: Karla Ivonne Serrano-Arévalo, Erika Rodríguez-Sevilla, Monserrat Alonso-Murias, Héctor Pérez-Aguilar, David Monzón-Hernández
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/13/6/198
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes the development of a dual-wavelength optical fiber sensor (DWOFS) that integrates two optical fiber structures in a multimode transmission line to measure the refractive index and temperature of a liquid concurrently. One structure is based on a refractive index sensor that utilizes surface plasmon resonance, comprising a 5 mm long single-mode fiber (SMF) section coated with chromium/gold (Cr/Au) films. The secondary structure employs a multimode interferometer with a 29 mm long no-core fiber (NCF) section covered with a thick layer of polydimethylsiloxane (PDMS) to measure temperature. The measurements obtained reveal two distinct drops in the transmission spectrum at approximately 600 nm and 1550 nm, respectively, enabling precise measurement of the two parameters. The sensor demonstrates a high degree of sensitivity to both refractive index and temperature, spanning the visible (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2770.30</mn><mtext> </mtext><mi mathvariant="normal">n</mi><mi mathvariant="normal">m</mi><mo>/</mo><mi mathvariant="normal">R</mi><mi mathvariant="normal">I</mi><mi mathvariant="normal">U</mi></mrow></semantics></math></inline-formula>) and infrared <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>−</mo><mn>0.178</mn><mtext> </mtext><mi mathvariant="normal">n</mi><mi mathvariant="normal">m</mi><mo>/</mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>) regions of the spectra, respectively. Furthermore, the thermo-optical coefficient for water <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mrow><mo>−</mo><mn>0.9928</mn><mo>×</mo><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mtext> </mtext><mi mathvariant="normal">R</mi><mi mathvariant="normal">I</mi><mi mathvariant="normal">U</mi><mo>/</mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>)</mo></mrow></semantics></math></inline-formula> was estimated. The proposed sensor offers a compact solution for the simultaneous measurement of refractive index and temperature in liquid samples for a variety of applications, including biological, environmental, and healthcare research.
ISSN:2227-9040