Research on structure and defense of adversarial example in deep learning
With the further promotion of deep learning technology in the fields of computer vision,network security and natural language processing,which has gradually exposed certain security risks.Existing deep learning algorithms can not effectively describe the essential characteristics of data or its inhe...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
POSTS&TELECOM PRESS Co., LTD
2020-04-01
|
Series: | 网络与信息安全学报 |
Subjects: | |
Online Access: | http://www.cjnis.com.cn/thesisDetails#10.11959/j.issn.2096-109x.2020016 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the further promotion of deep learning technology in the fields of computer vision,network security and natural language processing,which has gradually exposed certain security risks.Existing deep learning algorithms can not effectively describe the essential characteristics of data or its inherent causal relationship.When the algorithm faces malicious input,it often fails to give correct judgment results.Based on the current security threats of deep learning,the adversarial example problem and its characteristics in deep learning applications were introduced,hypotheses on the existence of adversarial examples were summarized,classic adversarial example construction methods were reviewed and recent research status in different scenarios were summarized,several defense techniques in different processes were compared,and finally the development trend of adversarial example research were forecasted. |
---|---|
ISSN: | 2096-109X |