Research on a Target Detection Algorithm for Common Pests Based on an Improved YOLOv7-Tiny Model
In agriculture and forestry, pest detection is critical for increasing crop yields and reducing economic losses. However, traditional deep learning models face challenges in resource-constrained environments, such as insufficient accuracy, slow inference speed, and large model sizes, which hinder th...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Agronomy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4395/14/12/3068 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In agriculture and forestry, pest detection is critical for increasing crop yields and reducing economic losses. However, traditional deep learning models face challenges in resource-constrained environments, such as insufficient accuracy, slow inference speed, and large model sizes, which hinder their practical application. To address these issues, this study proposes an improved YOLOv7-tiny model designed to deliver efficient, accurate, and lightweight pest detection solutions. The main improvements are as follows: 1. Lightweight Network Design: The backbone network is optimized by integrating GhostNet and Dynamic Region-Aware Convolution (DRConv) to enhance computational efficiency. 2. Feature Sharing Enhancement: The introduction of a Cross-layer Feature Sharing Network (CotNet Transformer) strengthens feature fusion and extraction capabilities. 3. Activation Function Optimization: The traditional ReLU activation function is replaced with the Gaussian Error Linear Unit (GELU) to improve nonlinear expression and classification performance. Experimental results demonstrate that the improved model surpasses YOLOv7-tiny in accuracy, inference speed, and model size, achieving a MAP@0.5 of 92.8%, reducing inference time to 4.0 milliseconds, and minimizing model size to just 4.8 MB. Additionally, compared to algorithms like Faster R-CNN, SSD, and RetinaNet, the improved model delivers superior detection performance. In conclusion, the improved YOLOv7-tiny provides an efficient and practical solution for intelligent pest detection in agriculture and forestry. |
|---|---|
| ISSN: | 2073-4395 |