Norm inflation for the derivative nonlinear Schrödinger equation
In this note, we study the ill-posedness problem for the derivative nonlinear Schrödinger equation (DNLS) in the one-dimensional setting. More precisely, by using a ternary-quinary tree expansion of the Duhamel formula we prove norm inflation in Sobolev spaces below the (scaling) critical regularity...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-12-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.566/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note, we study the ill-posedness problem for the derivative nonlinear Schrödinger equation (DNLS) in the one-dimensional setting. More precisely, by using a ternary-quinary tree expansion of the Duhamel formula we prove norm inflation in Sobolev spaces below the (scaling) critical regularity for the gauged DNLS. This ill-posedness result is sharp since DNLS is known to be globally well-posed in $L^2(\mathbb{R})$ [16]. The main novelty of our approach is to control the derivative loss from the cubic nonlinearity by the quintic nonlinearity with carefully chosen initial data. |
---|---|
ISSN: | 1778-3569 |