Asymptotic Stability of the Magnetohydrodynamic Flows with Temperature-Dependent Transport Coefficients

The objective of this paper is to analyze the asymptotic stability of global strong solutions to the boundary value problem of the compressible magnetohydrodynamic (MHD) equations for the ideal polytropic gas in which the viscosity <inline-formula><math xmlns="http://www.w3.org/1998/Ma...

Full description

Saved in:
Bibliographic Details
Main Author: Mingyu Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/2/100
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this paper is to analyze the asymptotic stability of global strong solutions to the boundary value problem of the compressible magnetohydrodynamic (MHD) equations for the ideal polytropic gas in which the viscosity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> and heat conductivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula> depend on temperature, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>=</mo><msup><mi>θ</mi><mi>α</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>κ</mi><mo>=</mo><msup><mi>θ</mi><mi>β</mi></msup></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula>. Both the global-in-time existence and uniqueness of strong solutions are obtained under certain assumptions on the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and initial data. Moreover, based on accurate uniform-in-time estimates, we show that the global large solutions decay exponentially in time to the equilibrium states. Compared with the existing results, the initial data could be large if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is small and the growth exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> can be arbitrarily large.
ISSN:2075-1680