Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation
This research investigates an integrated problem of construction scheduling and resource allocation. Inspired by complex construction practices, multi-time scale resources are considered for different length of terms, such as permanent staff and temporary workers. Differing from the common stochasti...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2018/2697985 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850230831276097536 |
|---|---|
| author | Qian Li Sha Tao Heap-Yih Chong Zhijie Sasha Dong |
| author_facet | Qian Li Sha Tao Heap-Yih Chong Zhijie Sasha Dong |
| author_sort | Qian Li |
| collection | DOAJ |
| description | This research investigates an integrated problem of construction scheduling and resource allocation. Inspired by complex construction practices, multi-time scale resources are considered for different length of terms, such as permanent staff and temporary workers. Differing from the common stochastic optimization problems, the resource price is supposed to be an uncertain parameter of which probability distribution is unknown, but observed data is given. Hence, the problem here is called Data-Driven Construction Scheduling and Multiscale Resource Allocation Problem (DD-CS&MRAP). Based on likelihood robust optimization, a multiobjective programming is developed where project completion time and expected resource cost are minimized simultaneously. To solve the problem efficiently, a double-layer metaheuristic comprised of Multiple Objective Particle Swarm Optimization (MOPSO) and interior point method named MOPSO-interior point algorithm is designed. The new solution presentation scheme and decoding process are developed. Finally, a construction case is used to validate the proposed method. The experimental results indicate that the MOPSO-interior point algorithm can reduce resource cost and improve the efficiency of resource utilization. |
| format | Article |
| id | doaj-art-06bf527de3a84bbda89a37df5461c1ff |
| institution | OA Journals |
| issn | 1076-2787 1099-0526 |
| language | English |
| publishDate | 2018-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Complexity |
| spelling | doaj-art-06bf527de3a84bbda89a37df5461c1ff2025-08-20T02:03:43ZengWileyComplexity1076-27871099-05262018-01-01201810.1155/2018/26979852697985Robust Optimization for Integrated Construction Scheduling and Multiscale Resource AllocationQian Li0Sha Tao1Heap-Yih Chong2Zhijie Sasha Dong3School of Management & Engineering, Nanjing University, Nanjing 210093, ChinaSchool of Management & Engineering, Nanjing University, Nanjing 210093, ChinaSchool of Built Environment, Curtin University, Perth, WA 6102, AustraliaIngram School of Engineering, Texas State University, San Marcos, TX 78666, USAThis research investigates an integrated problem of construction scheduling and resource allocation. Inspired by complex construction practices, multi-time scale resources are considered for different length of terms, such as permanent staff and temporary workers. Differing from the common stochastic optimization problems, the resource price is supposed to be an uncertain parameter of which probability distribution is unknown, but observed data is given. Hence, the problem here is called Data-Driven Construction Scheduling and Multiscale Resource Allocation Problem (DD-CS&MRAP). Based on likelihood robust optimization, a multiobjective programming is developed where project completion time and expected resource cost are minimized simultaneously. To solve the problem efficiently, a double-layer metaheuristic comprised of Multiple Objective Particle Swarm Optimization (MOPSO) and interior point method named MOPSO-interior point algorithm is designed. The new solution presentation scheme and decoding process are developed. Finally, a construction case is used to validate the proposed method. The experimental results indicate that the MOPSO-interior point algorithm can reduce resource cost and improve the efficiency of resource utilization.http://dx.doi.org/10.1155/2018/2697985 |
| spellingShingle | Qian Li Sha Tao Heap-Yih Chong Zhijie Sasha Dong Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation Complexity |
| title | Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation |
| title_full | Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation |
| title_fullStr | Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation |
| title_full_unstemmed | Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation |
| title_short | Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation |
| title_sort | robust optimization for integrated construction scheduling and multiscale resource allocation |
| url | http://dx.doi.org/10.1155/2018/2697985 |
| work_keys_str_mv | AT qianli robustoptimizationforintegratedconstructionschedulingandmultiscaleresourceallocation AT shatao robustoptimizationforintegratedconstructionschedulingandmultiscaleresourceallocation AT heapyihchong robustoptimizationforintegratedconstructionschedulingandmultiscaleresourceallocation AT zhijiesashadong robustoptimizationforintegratedconstructionschedulingandmultiscaleresourceallocation |