Multiparty Quantum Private Comparison Using Rotation Operations
This paper presents a multiparty quantum private comparison (MQPC) protocol that facilitates multiple users to compare the equality of their private inputs while preserving the confidentiality of each input through the principles of quantum mechanics. In our approach, users initially convert their s...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/4/274 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a multiparty quantum private comparison (MQPC) protocol that facilitates multiple users to compare the equality of their private inputs while preserving the confidentiality of each input through the principles of quantum mechanics. In our approach, users initially convert their secret integers into binary representations, which are then encoded into single photons that act as carriers of the information. These encoded single-photon states undergo encryption via rotational operations, effectively obscuring the original inputs before transmission to a semi-honest third party (TP). The TP decrypts the quantum states and conducts Z-basis measurements to derive the comparison results. To enhance security, the protocol incorporates decoy photons, enabling participants to detect potential eavesdropping on the quantum channel. Importantly, even if the TP or other participants attempt to glean insights into each other’s inputs, the encryption via rotational operations ensures that private information remains inaccessible. This protocol demonstrates significant advancements in practicality compared to existing MQPC frameworks that rely on complex quantum technologies, such as entanglement swapping and multi-particle entanglement. By leveraging the simplicity of single photons, rotation operations, and Z-basis measurements, our protocol is more accessible for implementation. |
|---|---|
| ISSN: | 2075-1680 |