Catalytic Pyrolysis of Biomass: A Review of Zeolite, Carbonaceous, and Metal Oxide Catalysts

This review provides an exploration of various catalytic pyrolysis techniques for bio-oil production, focusing on the effects of different pyrolysis methods (slow, fast, and flash pyrolysis) on bio-oil yield and composition. The review also discusses key factors influencing bio-oil production, inclu...

Full description

Saved in:
Bibliographic Details
Main Authors: Weiqiang Sun, Yihong Yan, Yuxin Wei, Jingjing Ma, Zhenchuan Niu, Guang Hu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/7/493
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This review provides an exploration of various catalytic pyrolysis techniques for bio-oil production, focusing on the effects of different pyrolysis methods (slow, fast, and flash pyrolysis) on bio-oil yield and composition. The review also discusses key factors influencing bio-oil production, including feedstock composition (cellulose, hemicellulose, and lignin), and the role of catalytic materials in enhancing yield and product selectivity. Three primary classes of catalysts—zeolites, carbonaceous materials, and metal oxides—are thoroughly examined, with a discussion on the differences between bulk catalysts and nanocatalysts. The paper highlights how these catalysts influence the formation of bio-oil components such as phenols, hydrocarbons, and oxygenated compounds. Furthermore, this review discusses recent advancements in catalyst design and modifications to optimize bio-oil production. This review provides the latest advancements in catalytic pyrolysis, emphasizing the correlation between catalyst properties and the resulting products. It aims to offer valuable insights into the future potential of catalytic pyrolysis for efficient biomass conversion and sustainable biofuel production.
ISSN:2079-4991