A telomere-to-telomere chromosome-scale genome assembly of glass catfish (Kryptopterus vitreolus)
Abstract Glass catfish (Kryptopterus vitreolus) is commonly distributed in several Asian countries, such as Thailand, Malaysia, and Indonesia. It is renowned for its near-transparent appearance, which has drawn considerable attention for biomedical research and the tropical ornamental fish industry....
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Scientific Data |
| Online Access: | https://doi.org/10.1038/s41597-025-04841-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Glass catfish (Kryptopterus vitreolus) is commonly distributed in several Asian countries, such as Thailand, Malaysia, and Indonesia. It is renowned for its near-transparent appearance, which has drawn considerable attention for biomedical research and the tropical ornamental fish industry. Here, we successfully constructed the first telomere-to-telomere (T2T) chromosome-scale genome assembly for glass catfish, by integration of PacBio HiFi, Nanopore ONT ultra-long, and Hi-C sequencing technologies. The haplotypic assembly covers approximately 687.7 Mb in length, featuring a high contig N50 of 21.3 Mb. This assembly was then anchored into 32 chromosomes, presenting a complete set of 64 telomeres and 32 centromeres. It was predicted with 252.4 Mb of repetitive sequences and annotated with a total of 24,696 protein-coding genes. Subsequent BUSCO analysis revealed high genome completeness (up to 96.4%). This high-quality T2T genome assembly not only provides a valuable genetic resource for investigating the molecular mechanisms underlying transparency, but also supports in-depth studies on functional genomics, genetic diversity, and selective breeding for this economically important fish species. |
|---|---|
| ISSN: | 2052-4463 |