Regulation of the non-selective Na+ importer capacity of NRT1.2/NPF4.6/AIT1 by SOS2-mediated phosphorylation in Arabidopsis
Summary: Although preventing sodium ion import is crucial for salt tolerance, the mechanisms and the Na+ importers involved remain unclear. We identified NRT1.2/NPF4.6/AIT1 as a non-selective Na+ importer. NRT1.2 overexpression in Arabidopsis increased salt sensitivity due to Na+ accumulation, while...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Cell Reports |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124725005005 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Although preventing sodium ion import is crucial for salt tolerance, the mechanisms and the Na+ importers involved remain unclear. We identified NRT1.2/NPF4.6/AIT1 as a non-selective Na+ importer. NRT1.2 overexpression in Arabidopsis increased salt sensitivity due to Na+ accumulation, while nrt1.2 mutants exhibited opposite results. Non-invasive micro-test technology indicated Na+ uptake capability of NRT1.2 in Arabidopsis roots. When expressed in Xenopus laevis oocytes, NRT1.2 displayed low-pH-dependent and NO3−-promoted Na+, K+, and Li+ importer capacity, conferring higher potassium and lithium tolerance in NRT1.2 overexpression plants. Mechanically, salt overly sensitive 2 (SOS2) phosphorylated NRT1.2 at Thr248, reducing its Na+ import and preventing excessive Na+ accumulation. Prolonged salt stress also downregulated NRT1.2 transcripts. In summary, our findings unveil a role of NRT1.2 in Na+ transport and a regulatory pathway via SOS2-mediated phosphorylation of NRT1.2 at Thr248, crucial for plant salt-stress adaptation. |
|---|---|
| ISSN: | 2211-1247 |