Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithm
The response surface methodology (RSM) and an artificial neural network-based genetic algorithm (ANN-GA) were carried out to investigate the effects of urea content, Na<sub>2</sub>CO<sub>3</sub> content and rapeseed meal content on free gossypol detoxification from cottonseed...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Zhejiang University Press
2011-01-01
|
| Series: | 浙江大学学报. 农业与生命科学版 |
| Subjects: | |
| Online Access: | https://www.academax.com/doi/10.3785/j.issn.1008-9209.2011.01.014 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849247544343789568 |
|---|---|
| author | TANG Jiang-wu SUN Hong YAO Xiao-hong WU Yi-fei WANG Xin |
| author_facet | TANG Jiang-wu SUN Hong YAO Xiao-hong WU Yi-fei WANG Xin |
| author_sort | TANG Jiang-wu |
| collection | DOAJ |
| description | The response surface methodology (RSM) and an artificial neural network-based genetic algorithm (ANN-GA) were carried out to investigate the effects of urea content, Na<sub>2</sub>CO<sub>3</sub> content and rapeseed meal content on free gossypol detoxification from cottonseed meals by solid-state fermentation. The modeling and optimizing abilities of the two methods were compared. The results showed that according to RSM, the optimal additive contents for free gossypol detoxification were 0.97% urea, 2.47% Na<sub>2</sub>CO<sub>3</sub> and 24.32% rapeseed meal, and the predicted detoxification and experimentally measured detoxification ratios were 77.71% and 79.10%, respectively. Among the three factors, Na<sub>2</sub>CO<sub>3</sub> content had the biggest effect on free gossypol detoxification. According to the ANN-GA method, the maximum detoxification ratio of 81.36% was predicted when the urea content, Na<sub>2</sub>CO<sub>3</sub> content and rapeseed meal content were 0.98%, 2.45% and 23.66%, respectively. While the experimentally measured detoxification ratio was 80.09%. The correlation efficiency of 0.9191 identified by response surface methodology was a little lower than that of 0.9991 identified by genetic algorithm based on an artificial neural network model, which also was with a lower RMSE value by 0.13, indicating that the artificial neural network-based genetic algorithm had a much higher optimizing ability and modeling ability during the optimization of the solid-state fermentation process. |
| format | Article |
| id | doaj-art-060b368d95e947cf847ea4bbc950d7c8 |
| institution | Kabale University |
| issn | 1008-9209 2097-5155 |
| language | English |
| publishDate | 2011-01-01 |
| publisher | Zhejiang University Press |
| record_format | Article |
| series | 浙江大学学报. 农业与生命科学版 |
| spelling | doaj-art-060b368d95e947cf847ea4bbc950d7c82025-08-20T03:58:11ZengZhejiang University Press浙江大学学报. 农业与生命科学版1008-92092097-51552011-01-01379710210.3785/j.issn.1008-9209.2011.01.01410089209Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithmTANG Jiang-wuSUN HongYAO Xiao-hongWU Yi-feiWANG XinThe response surface methodology (RSM) and an artificial neural network-based genetic algorithm (ANN-GA) were carried out to investigate the effects of urea content, Na<sub>2</sub>CO<sub>3</sub> content and rapeseed meal content on free gossypol detoxification from cottonseed meals by solid-state fermentation. The modeling and optimizing abilities of the two methods were compared. The results showed that according to RSM, the optimal additive contents for free gossypol detoxification were 0.97% urea, 2.47% Na<sub>2</sub>CO<sub>3</sub> and 24.32% rapeseed meal, and the predicted detoxification and experimentally measured detoxification ratios were 77.71% and 79.10%, respectively. Among the three factors, Na<sub>2</sub>CO<sub>3</sub> content had the biggest effect on free gossypol detoxification. According to the ANN-GA method, the maximum detoxification ratio of 81.36% was predicted when the urea content, Na<sub>2</sub>CO<sub>3</sub> content and rapeseed meal content were 0.98%, 2.45% and 23.66%, respectively. While the experimentally measured detoxification ratio was 80.09%. The correlation efficiency of 0.9191 identified by response surface methodology was a little lower than that of 0.9991 identified by genetic algorithm based on an artificial neural network model, which also was with a lower RMSE value by 0.13, indicating that the artificial neural network-based genetic algorithm had a much higher optimizing ability and modeling ability during the optimization of the solid-state fermentation process.https://www.academax.com/doi/10.3785/j.issn.1008-9209.2011.01.014cottonseed mealfree gossypoloptimizationresponse surface methodologyneural networkgenetic algorithm |
| spellingShingle | TANG Jiang-wu SUN Hong YAO Xiao-hong WU Yi-fei WANG Xin Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithm 浙江大学学报. 农业与生命科学版 cottonseed meal free gossypol optimization response surface methodology neural network genetic algorithm |
| title | Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithm |
| title_full | Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithm |
| title_fullStr | Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithm |
| title_full_unstemmed | Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithm |
| title_short | Optimization of additive contents in cottonseed meals during the solid-state fermentation using response surface methodology and artificial neural network-based genetic algorithm |
| title_sort | optimization of additive contents in cottonseed meals during the solid state fermentation using response surface methodology and artificial neural network based genetic algorithm |
| topic | cottonseed meal free gossypol optimization response surface methodology neural network genetic algorithm |
| url | https://www.academax.com/doi/10.3785/j.issn.1008-9209.2011.01.014 |
| work_keys_str_mv | AT tangjiangwu optimizationofadditivecontentsincottonseedmealsduringthesolidstatefermentationusingresponsesurfacemethodologyandartificialneuralnetworkbasedgeneticalgorithm AT sunhong optimizationofadditivecontentsincottonseedmealsduringthesolidstatefermentationusingresponsesurfacemethodologyandartificialneuralnetworkbasedgeneticalgorithm AT yaoxiaohong optimizationofadditivecontentsincottonseedmealsduringthesolidstatefermentationusingresponsesurfacemethodologyandartificialneuralnetworkbasedgeneticalgorithm AT wuyifei optimizationofadditivecontentsincottonseedmealsduringthesolidstatefermentationusingresponsesurfacemethodologyandartificialneuralnetworkbasedgeneticalgorithm AT wangxin optimizationofadditivecontentsincottonseedmealsduringthesolidstatefermentationusingresponsesurfacemethodologyandartificialneuralnetworkbasedgeneticalgorithm |