Single-Task Joint Learning Model for an Online Multi-Object Tracking Framework

Multi-object tracking faces critical challenges, including occlusions, ID switches, and erroneous detection boxes, which significantly hinder tracking accuracy in complex environments. To address these issues, this study proposes a single-task joint learning (STJL) model integrated into an online mu...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan-Kai Wang, Tung-Ming Pan, Chi-En Hu
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/22/10540
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-object tracking faces critical challenges, including occlusions, ID switches, and erroneous detection boxes, which significantly hinder tracking accuracy in complex environments. To address these issues, this study proposes a single-task joint learning (STJL) model integrated into an online multi-object tracking framework to enhance feature extraction and model robustness across diverse scenarios. Employing cross-dataset training, the model has improved generalization capabilities and can effectively handle various tracking conditions. A key innovation is the refined tracker initialization strategy that combines detection and tracklet confidence, which significantly reduces the number of false positives and ID switches. Additionally, the framework employs a combination of Mahalanobis and cosine distances to optimize data association, further improving tracking accuracy. The experimental results demonstrate that the proposed model outperformed state-of-the-art methods on standard benchmark datasets, achieving superior MOTA and reduced ID switches, confirming its effectiveness in dynamic and occlusion-heavy environments.
ISSN:2076-3417