A convolutional autoencoder framework for ECG signal analysis
Electrocardiographic (ECG) signals are used to evaluate heart activity and to identify disease-related anomalies. Reliable support systems are useful for analyzing ECG signals, for instance, in long-term data acquisition and evaluation (e.g., 24-hour holter recording) or to support physicians in rea...
Saved in:
Main Authors: | Ugo Lomoio, Patrizia Vizza, Raffaele Giancotti, Salvatore Petrolo, Sergio Flesca, Fabiola Boccuto, Pietro Hiram Guzzi, Pierangelo Veltri, Giuseppe Tradigo |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-01-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844024175482 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Enhancing Anomaly Detection Through Latent Space Manipulation in Autoencoders: A Comparative Analysis
by: Tomasz Walczyna, et al.
Published: (2024-12-01) -
Modified Autoencoder Training and Scoring for Robust Unsupervised Anomaly Detection in Deep Learning
by: Nicholas Merrill, et al.
Published: (2020-01-01) -
Lightweight anomaly detection model for UAV networks based on memory-enhanced autoencoders
by: HU Tianzhu, et al.
Published: (2024-04-01) -
Towards Transparent AI in Medicine: ECG-Based Arrhythmia Detection with Explainable Deep Learning
by: Oleksii Kovalchuk, et al.
Published: (2025-01-01) -
Seq2Seq-based GRU autoencoder for anomaly detection and failure identification in coal mining hydraulic support systems
by: Kai Zhan, et al.
Published: (2025-01-01)