Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids

This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature...

Full description

Saved in:
Bibliographic Details
Main Authors: Marvin Diamantopoulos, Christoph Hochenauer
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/7992
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850077074587385856
author Marvin Diamantopoulos
Christoph Hochenauer
author_facet Marvin Diamantopoulos
Christoph Hochenauer
author_sort Marvin Diamantopoulos
collection DOAJ
description This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic experimental approach was used, varying nozzle geometry—specifically apex angle, gas nozzle diameter, and number of gas nozzles—to identify the optimal nozzle configuration (ONC). The spray qualities of the nozzle configurations were evaluated via high-speed imaging at 75,000 FPS. Shadowgraphy was employed for the optical characterisation of the spray, determining the optimal volumetric air-to-liquid ratio (ALR), a key parameter influencing energy efficiency and operational cost, and for assessing droplet size distributions under varying ALR and viscosity of PDMS. The ONC yielded a Sauter mean diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mn>32</mn></msub></semantics></math></inline-formula> of 570 × 10<sup>−6</sup><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>, at an ALR of 8532 and a zero-shear viscosity of 15.9 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Pa</mi></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">s</mi></semantics></math></inline-formula>. The results are relevant for researchers and engineers developing twin fluid atomisation systems for challenging industrial fluids with similar physical properties, such as those in wastewater treatment and coal–water slurry atomisation (CWS). This study provides design guidelines for external twin fluid atomisers to enhance atomisation efficiency under such conditions.
format Article
id doaj-art-05720c581a7c4fe985679dc9a024b785
institution DOAJ
issn 2076-3417
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-05720c581a7c4fe985679dc9a024b7852025-08-20T02:45:53ZengMDPI AGApplied Sciences2076-34172025-07-011514799210.3390/app15147992Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning FluidsMarvin Diamantopoulos0Christoph Hochenauer1Insitute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25B, 8010 Graz, AustriaInsitute of Thermal Engineering, Graz University of Technology, Inffeldgasse 25B, 8010 Graz, AustriaThis study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic experimental approach was used, varying nozzle geometry—specifically apex angle, gas nozzle diameter, and number of gas nozzles—to identify the optimal nozzle configuration (ONC). The spray qualities of the nozzle configurations were evaluated via high-speed imaging at 75,000 FPS. Shadowgraphy was employed for the optical characterisation of the spray, determining the optimal volumetric air-to-liquid ratio (ALR), a key parameter influencing energy efficiency and operational cost, and for assessing droplet size distributions under varying ALR and viscosity of PDMS. The ONC yielded a Sauter mean diameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mn>32</mn></msub></semantics></math></inline-formula> of 570 × 10<sup>−6</sup><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>, at an ALR of 8532 and a zero-shear viscosity of 15.9 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Pa</mi></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">s</mi></semantics></math></inline-formula>. The results are relevant for researchers and engineers developing twin fluid atomisation systems for challenging industrial fluids with similar physical properties, such as those in wastewater treatment and coal–water slurry atomisation (CWS). This study provides design guidelines for external twin fluid atomisers to enhance atomisation efficiency under such conditions.https://www.mdpi.com/2076-3417/15/14/7992twin fluid atomisationhigh-viscositypolydimethylsiloxaneatomiser design
spellingShingle Marvin Diamantopoulos
Christoph Hochenauer
Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
Applied Sciences
twin fluid atomisation
high-viscosity
polydimethylsiloxane
atomiser design
title Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
title_full Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
title_fullStr Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
title_full_unstemmed Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
title_short Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
title_sort optimised twin fluid atomiser design for high viscosity shear thinning fluids
topic twin fluid atomisation
high-viscosity
polydimethylsiloxane
atomiser design
url https://www.mdpi.com/2076-3417/15/14/7992
work_keys_str_mv AT marvindiamantopoulos optimisedtwinfluidatomiserdesignforhighviscosityshearthinningfluids
AT christophhochenauer optimisedtwinfluidatomiserdesignforhighviscosityshearthinningfluids