Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan Siber

Keamanan siber merupakan isu penting di era modern seperti sekarang ini. Serangan siber yang semakin beragam terus bermunculan. Teknik dan metode baru machine learning dan deep learning terus dikembangkan oleh banyak peneliti untuk menangani serangan siber. Selain teknik baru, berbagai jenis datase...

Full description

Saved in:
Bibliographic Details
Main Authors: Eza Yolanda Fitria, Kusprasapta Mutijarsa
Format: Article
Language:Indonesian
Published: University of Brawijaya 2023-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/7341
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858598795542528
author Eza Yolanda Fitria
Kusprasapta Mutijarsa
author_facet Eza Yolanda Fitria
Kusprasapta Mutijarsa
author_sort Eza Yolanda Fitria
collection DOAJ
description Keamanan siber merupakan isu penting di era modern seperti sekarang ini. Serangan siber yang semakin beragam terus bermunculan. Teknik dan metode baru machine learning dan deep learning terus dikembangkan oleh banyak peneliti untuk menangani serangan siber. Selain teknik baru, berbagai jenis dataset baru terkait serangan siber juga turut berkembang. Permasalahan muncul ketika banyaknya teknik atau metode yang ada belum tentu tepat menangani berbagai jenis serangan siber. Begitupun sebaliknya, belum tentu berbagai jenis serangan siber dapat ditangani hanya dengan menggunakan teknik atau metode tertentu saja. Tujuan penelitian ini adalah memetakan teknik-teknik dan metode kecerdasan buatan untuk mendeteksi ancaman teknologi serangan siber dalam bentuk Systematic Literature Review (SLR). Pada penelitian ini teknik dan metode machine learning maupun deep learning dievaluasi untuk dapat menangani jenis serangan siber tertentu dengan tepat. Berbagai dataset yang dapat digunakan untuk eksperimen juga dieksplorasi. Jenis serangan siber yang dibahas pada penelitian ini difokuskan jenis serangan pada sistem host dan serangan pada lapisan keamanan jaringan. Pada penelitian SLR sebelumnya, hal-hal tersebut dibahas secara terpisah atau bahkan salah satunya saja sehingga dalam penelitian ini perlu dibangun kembali SLR yang bisa mengisi kekurangan pada penelitian SLR sebelumnya. Originalitas penelitian ini terletak pada analisis teknik atau metode kecerdasan buatan yang secara spesifik tepat untuk menangani jenis serangan siber tertentu. Terdapat total 44 paper survei yang diulas, diterbitkan antara tahun 2018 hingga 2023. Dari keseluruhan paper tersebut, 30 paper membahas penggunaan teknk machine learning dan deep learning. Kemudian, 19 paper yang membahas penggunaan dataset dan 13 paper membahas peluang penelitian masa depan. Terakhir, 5 paper yang membahas terkait tools. Hasil dari penelitian ini diharapkan dapat berkontribusi dalam memberikan wawasan baru di dunia keamanan siber untuk membuka peluang penelitian masa depan, terutama bagi para peneliti pemula yang ingin melakukan riset di bidang keamanan siber.   Abstract Cybersecurity is an essential issue in today's modern era. An increasingly diverse range of cyberattacks continues to emerge. Many researchers continue to develop new techniques and methods for machine learning and deep learning to deal with cyberattacks. In addition to new techniques, various types of new datasets related to cyberattacks are also developing. Problems arise when the many existing techniques or methods are not appropriate for dealing with various types of cyberattacks. Vice versa, it is not certain that various types of cyberattacks can be handled only using specific techniques or methods. This research aims to map the techniques and methods of artificial intelligence to detect cyber-attack technology threats in the form of a Systematic Literature Review (SLR). In this research, machine learning and deep learning techniques and methods are evaluated to be able to handle certain types of cyberattacks properly. Various datasets that can be used for experiments are also explored. The types of cyberattacks discussed in this study focus on attacks on the host system and the network security layer. In previous SLR research, these matters were discussed separately or even just one of them. In this study, it was necessary to rebuild the SLR, which could fill the deficiencies in the previous SLR research. The originality of this research lies in the analysis of artificial intelligence techniques or methods that are specifically appropriate for dealing with certain types of cyberattacks. A total of 44 reviewed survey papers were published between 2018 and 2023. Of all these, 30 papers discuss machine learning and deep learning techniques. Then, 19 papers examine the use of datasets, 13 papers discuss future research opportunities, and five papers discuss developing tools. The results of this research are expected to contribute to providing new insights into the world of cybersecurity to open future research opportunities, especially for novice researchers who wish to conduct research in the field of cybersecurity.
format Article
id doaj-art-055e9cdc5abe4127b7adc55cfc2cf657
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2023-12-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-055e9cdc5abe4127b7adc55cfc2cf6572025-02-11T10:38:35ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792023-12-0110610.25126/jtiik.1067341Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan SiberEza Yolanda Fitria0Kusprasapta Mutijarsa1Institut Teknologi Bandung, BandungInstitut Teknologi Bandung, Bandung Keamanan siber merupakan isu penting di era modern seperti sekarang ini. Serangan siber yang semakin beragam terus bermunculan. Teknik dan metode baru machine learning dan deep learning terus dikembangkan oleh banyak peneliti untuk menangani serangan siber. Selain teknik baru, berbagai jenis dataset baru terkait serangan siber juga turut berkembang. Permasalahan muncul ketika banyaknya teknik atau metode yang ada belum tentu tepat menangani berbagai jenis serangan siber. Begitupun sebaliknya, belum tentu berbagai jenis serangan siber dapat ditangani hanya dengan menggunakan teknik atau metode tertentu saja. Tujuan penelitian ini adalah memetakan teknik-teknik dan metode kecerdasan buatan untuk mendeteksi ancaman teknologi serangan siber dalam bentuk Systematic Literature Review (SLR). Pada penelitian ini teknik dan metode machine learning maupun deep learning dievaluasi untuk dapat menangani jenis serangan siber tertentu dengan tepat. Berbagai dataset yang dapat digunakan untuk eksperimen juga dieksplorasi. Jenis serangan siber yang dibahas pada penelitian ini difokuskan jenis serangan pada sistem host dan serangan pada lapisan keamanan jaringan. Pada penelitian SLR sebelumnya, hal-hal tersebut dibahas secara terpisah atau bahkan salah satunya saja sehingga dalam penelitian ini perlu dibangun kembali SLR yang bisa mengisi kekurangan pada penelitian SLR sebelumnya. Originalitas penelitian ini terletak pada analisis teknik atau metode kecerdasan buatan yang secara spesifik tepat untuk menangani jenis serangan siber tertentu. Terdapat total 44 paper survei yang diulas, diterbitkan antara tahun 2018 hingga 2023. Dari keseluruhan paper tersebut, 30 paper membahas penggunaan teknk machine learning dan deep learning. Kemudian, 19 paper yang membahas penggunaan dataset dan 13 paper membahas peluang penelitian masa depan. Terakhir, 5 paper yang membahas terkait tools. Hasil dari penelitian ini diharapkan dapat berkontribusi dalam memberikan wawasan baru di dunia keamanan siber untuk membuka peluang penelitian masa depan, terutama bagi para peneliti pemula yang ingin melakukan riset di bidang keamanan siber.   Abstract Cybersecurity is an essential issue in today's modern era. An increasingly diverse range of cyberattacks continues to emerge. Many researchers continue to develop new techniques and methods for machine learning and deep learning to deal with cyberattacks. In addition to new techniques, various types of new datasets related to cyberattacks are also developing. Problems arise when the many existing techniques or methods are not appropriate for dealing with various types of cyberattacks. Vice versa, it is not certain that various types of cyberattacks can be handled only using specific techniques or methods. This research aims to map the techniques and methods of artificial intelligence to detect cyber-attack technology threats in the form of a Systematic Literature Review (SLR). In this research, machine learning and deep learning techniques and methods are evaluated to be able to handle certain types of cyberattacks properly. Various datasets that can be used for experiments are also explored. The types of cyberattacks discussed in this study focus on attacks on the host system and the network security layer. In previous SLR research, these matters were discussed separately or even just one of them. In this study, it was necessary to rebuild the SLR, which could fill the deficiencies in the previous SLR research. The originality of this research lies in the analysis of artificial intelligence techniques or methods that are specifically appropriate for dealing with certain types of cyberattacks. A total of 44 reviewed survey papers were published between 2018 and 2023. Of all these, 30 papers discuss machine learning and deep learning techniques. Then, 19 papers examine the use of datasets, 13 papers discuss future research opportunities, and five papers discuss developing tools. The results of this research are expected to contribute to providing new insights into the world of cybersecurity to open future research opportunities, especially for novice researchers who wish to conduct research in the field of cybersecurity. https://jtiik.ub.ac.id/index.php/jtiik/article/view/7341
spellingShingle Eza Yolanda Fitria
Kusprasapta Mutijarsa
Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan Siber
Jurnal Teknologi Informasi dan Ilmu Komputer
title Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan Siber
title_full Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan Siber
title_fullStr Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan Siber
title_full_unstemmed Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan Siber
title_short Survei Penelitian Metode Kecerdasan Buatan untuk Mendeteksi Ancaman Teknologi Serangan Siber
title_sort survei penelitian metode kecerdasan buatan untuk mendeteksi ancaman teknologi serangan siber
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/7341
work_keys_str_mv AT ezayolandafitria surveipenelitianmetodekecerdasanbuatanuntukmendeteksiancamanteknologiserangansiber
AT kusprasaptamutijarsa surveipenelitianmetodekecerdasanbuatanuntukmendeteksiancamanteknologiserangansiber