Copper Stress Levels Classification in Oilseed Rape Using Deep Residual Networks and Hyperspectral False-Color Images
In recent years, heavy metal contamination in agricultural products has become a growing concern in the field of food safety. Copper (Cu) stress in crops not only leads to significant reductions in both yield and quality but also poses potential health risks to humans. This study proposes an efficie...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Horticulturae |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2311-7524/11/7/840 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In recent years, heavy metal contamination in agricultural products has become a growing concern in the field of food safety. Copper (Cu) stress in crops not only leads to significant reductions in both yield and quality but also poses potential health risks to humans. This study proposes an efficient and precise non-destructive detection method for Cu stress in oilseed rape, which is based on hyperspectral false-color image construction using principal component analysis (PCA). By comprehensively capturing the spectral representation of oilseed rape plants, both the one-dimensional (1D) spectral sequence and spatial image data were utilized for multi-class classification. The classification performance of models based on 1D spectral sequences was compared from two perspectives: first, between machine learning and deep learning methods (best accuracy: 93.49% vs. 96.69%); and second, between shallow and deep convolutional neural networks (CNNs) (best accuracy: 95.15% vs. 96.69%). For spatial image data, deep residual networks were employed to evaluate the effectiveness of visible-light and false-color images. The RegNet architecture was chosen for its flexible parameterization and proven effectiveness in extracting multi-scale features from hyperspectral false-color images. This flexibility enabled RegNetX-6.4GF to achieve optimal performance on the dataset constructed from three types of false-color images, with the model reaching a Macro-Precision, Macro-Recall, Macro-F<sub>1</sub>, and Accuracy of 98.17%, 98.15%, 98.15%, and 98.15%, respectively. Furthermore, Grad-CAM visualizations revealed that latent physiological changes in plants under heavy metal stress guided feature learning within CNNs, and demonstrated the effectiveness of false-color image construction in extracting discriminative features. Overall, the proposed technique can be integrated into portable hyperspectral imaging devices, enabling real-time and non-destructive detection of heavy metal stress in modern agricultural practices. |
|---|---|
| ISSN: | 2311-7524 |