Physiological, biochemical and histological effects of abscisic acid-synthesized silver and copper oxide nanoparticles on the potato tuber moth, Phthorimaea operculella

Abstract Background The potato tuber moth (PTM), Phthorimaea operculella, poses a significant threat to potato cultivation in tropical and subtropical regions. Chemical control, though widely used, poses risks to human and environmental health, necessitating safer alternatives. This study investigat...

Full description

Saved in:
Bibliographic Details
Main Authors: Amr S. Abou El-Ela, Chao Zhang, Asim Munawar, Xuan Chen, Yixin Zhang, Eric Siaw Ntiri, Modhi O. Alotaibi, Amr Elkelish, Suhailah S. Aljameel, Wenwu Zhou, Zeng-Rong Zhu
Format: Article
Language:English
Published: SpringerOpen 2025-05-01
Series:Chemical and Biological Technologies in Agriculture
Subjects:
Online Access:https://doi.org/10.1186/s40538-025-00782-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background The potato tuber moth (PTM), Phthorimaea operculella, poses a significant threat to potato cultivation in tropical and subtropical regions. Chemical control, though widely used, poses risks to human and environmental health, necessitating safer alternatives. This study investigated eco-friendly alternatives by synthesizing silver (AgNPs) and copper oxide nanoparticles (CuONPs) using abscisic acid (ABA). Results Characterization through UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transform infrared spectroscopy, and zeta potential analysis confirmed the successful synthesis of AgNPs with a uniform size of 35.8 nm and a plasmon resonance at 430 nm. CuONPs displayed a porous, rugby sheet-like structure, with a thickness of 68.5 nm and a 290 nm absorption peak. The effectiveness of the nanoparticles against PTM larvae was assessed through larval spraying and leaf-dipping. Larval spraying outperformed leaf-dipping, with median lethal concentration (LC50) values of 670 mg/L for AgNPs and 1320 mg/L for CuONPs. AgNPs and CuONPs significantly altered digestive enzyme activities in treated PTM larvae, reducing α-amylase, β-glucosidase, lipase, protease, and trypsin, and increasing acid phosphatase activity. Histological studies revealed damage to the larvae's midgut epithelial layer and peritrophic membrane, resulting in nuclei dispersion. Conclusions Our study shows a cost-effective, minimal-impact strategy for synthesizing AgNPs and CuONPs, which can serve as a potential approach for managing PTM. Graphical abstract
ISSN:2196-5641