Intersection of parabolic subgroups in Euclidean braid groups: a short proof
We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups $A[\tilde{A}_n]$ is again a parabolic subgroup. To that end, we use that the spherical-type Artin group $A[B_{n+1}]$ is isomorphic to $A[\tilde{A}_n]...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.656/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206129190240256 |
---|---|
author | Cumplido, María Gavazzi, Federica Paris, Luis |
author_facet | Cumplido, María Gavazzi, Federica Paris, Luis |
author_sort | Cumplido, María |
collection | DOAJ |
description | We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups $A[\tilde{A}_n]$ is again a parabolic subgroup. To that end, we use that the spherical-type Artin group $A[B_{n+1}]$ is isomorphic to $A[\tilde{A}_n]\rtimes \mathbb{Z}$ . |
format | Article |
id | doaj-art-0514bc876a61473687115b50942de01d |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-0514bc876a61473687115b50942de01d2025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111445144810.5802/crmath.65610.5802/crmath.656Intersection of parabolic subgroups in Euclidean braid groups: a short proofCumplido, María0Gavazzi, Federica1Paris, Luis2Departamento de Álgebra, Facultad de Matemáticas, Universidad de Sevilla, Calle Tarfia s/n 41012, Seville, SpainIMB, UMR5584, CNRS, Université de Bourgogne, 21000 Dijon, FranceIMB, UMR5584, CNRS, Université de Bourgogne, 21000 Dijon, FranceWe give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups $A[\tilde{A}_n]$ is again a parabolic subgroup. To that end, we use that the spherical-type Artin group $A[B_{n+1}]$ is isomorphic to $A[\tilde{A}_n]\rtimes \mathbb{Z}$ .https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.656/Group theoryArtin groupsEuclidean braid groupsparabolic subgroupsgroup isomorphism |
spellingShingle | Cumplido, María Gavazzi, Federica Paris, Luis Intersection of parabolic subgroups in Euclidean braid groups: a short proof Comptes Rendus. Mathématique Group theory Artin groups Euclidean braid groups parabolic subgroups group isomorphism |
title | Intersection of parabolic subgroups in Euclidean braid groups: a short proof |
title_full | Intersection of parabolic subgroups in Euclidean braid groups: a short proof |
title_fullStr | Intersection of parabolic subgroups in Euclidean braid groups: a short proof |
title_full_unstemmed | Intersection of parabolic subgroups in Euclidean braid groups: a short proof |
title_short | Intersection of parabolic subgroups in Euclidean braid groups: a short proof |
title_sort | intersection of parabolic subgroups in euclidean braid groups a short proof |
topic | Group theory Artin groups Euclidean braid groups parabolic subgroups group isomorphism |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.656/ |
work_keys_str_mv | AT cumplidomaria intersectionofparabolicsubgroupsineuclideanbraidgroupsashortproof AT gavazzifederica intersectionofparabolicsubgroupsineuclideanbraidgroupsashortproof AT parisluis intersectionofparabolicsubgroupsineuclideanbraidgroupsashortproof |