Intersection of parabolic subgroups in Euclidean braid groups: a short proof

We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups $A[\tilde{A}_n]$ is again a parabolic subgroup. To that end, we use that the spherical-type Artin group $A[B_{n+1}]$ is isomorphic to $A[\tilde{A}_n]...

Full description

Saved in:
Bibliographic Details
Main Authors: Cumplido, María, Gavazzi, Federica, Paris, Luis
Format: Article
Language:English
Published: Académie des sciences 2024-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.656/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206129190240256
author Cumplido, María
Gavazzi, Federica
Paris, Luis
author_facet Cumplido, María
Gavazzi, Federica
Paris, Luis
author_sort Cumplido, María
collection DOAJ
description We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups $A[\tilde{A}_n]$ is again a parabolic subgroup. To that end, we use that the spherical-type Artin group $A[B_{n+1}]$ is isomorphic to $A[\tilde{A}_n]\rtimes \mathbb{Z}$ .
format Article
id doaj-art-0514bc876a61473687115b50942de01d
institution Kabale University
issn 1778-3569
language English
publishDate 2024-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-0514bc876a61473687115b50942de01d2025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111445144810.5802/crmath.65610.5802/crmath.656Intersection of parabolic subgroups in Euclidean braid groups: a short proofCumplido, María0Gavazzi, Federica1Paris, Luis2Departamento de Álgebra, Facultad de Matemáticas, Universidad de Sevilla, Calle Tarfia s/n 41012, Seville, SpainIMB, UMR5584, CNRS, Université de Bourgogne, 21000 Dijon, FranceIMB, UMR5584, CNRS, Université de Bourgogne, 21000 Dijon, FranceWe give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups $A[\tilde{A}_n]$ is again a parabolic subgroup. To that end, we use that the spherical-type Artin group $A[B_{n+1}]$ is isomorphic to $A[\tilde{A}_n]\rtimes \mathbb{Z}$ .https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.656/Group theoryArtin groupsEuclidean braid groupsparabolic subgroupsgroup isomorphism
spellingShingle Cumplido, María
Gavazzi, Federica
Paris, Luis
Intersection of parabolic subgroups in Euclidean braid groups: a short proof
Comptes Rendus. Mathématique
Group theory
Artin groups
Euclidean braid groups
parabolic subgroups
group isomorphism
title Intersection of parabolic subgroups in Euclidean braid groups: a short proof
title_full Intersection of parabolic subgroups in Euclidean braid groups: a short proof
title_fullStr Intersection of parabolic subgroups in Euclidean braid groups: a short proof
title_full_unstemmed Intersection of parabolic subgroups in Euclidean braid groups: a short proof
title_short Intersection of parabolic subgroups in Euclidean braid groups: a short proof
title_sort intersection of parabolic subgroups in euclidean braid groups a short proof
topic Group theory
Artin groups
Euclidean braid groups
parabolic subgroups
group isomorphism
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.656/
work_keys_str_mv AT cumplidomaria intersectionofparabolicsubgroupsineuclideanbraidgroupsashortproof
AT gavazzifederica intersectionofparabolicsubgroupsineuclideanbraidgroupsashortproof
AT parisluis intersectionofparabolicsubgroupsineuclideanbraidgroupsashortproof