Bubble-wall speed with loop corrections
Abstract In this paper, we investigate the dynamics of the nucleating scalar field during the first-order phase transitions by incorporating one-loop corrections of classical fluctuations. We assume that a high-temperature expansion is valid — where the mass of the scalar field is significantly smal...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-03-01
|
| Series: | Journal of High Energy Physics |
| Subjects: | |
| Online Access: | https://doi.org/10.1007/JHEP03(2025)024 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract In this paper, we investigate the dynamics of the nucleating scalar field during the first-order phase transitions by incorporating one-loop corrections of classical fluctuations. We assume that a high-temperature expansion is valid — where the mass of the scalar field is significantly smaller than the temperature — so that we can treat the bubble-wall dynamics in a regime where quantum fluctuations can be integrated out. We present a systematic framework for calculating classical loop corrections to the wall speed; contrast our results with traditional methods based on the derivative expansion; show that the latent heat can differ from the effective-potential result; and discuss general hydrodynamic corrections. Finally, we show an application of the presented framework for a simple scalar field model, finding that the one-loop improvement decreases the wall speed and that an effective-potential approximation underestimates full one-loop corrections by about a factor of two. |
|---|---|
| ISSN: | 1029-8479 |