Deep learning-based automatic detection and grading of disk herniation in lumbar magnetic resonance images

Abstract Magnetic resonance imaging of the lumbar spine is a key technique for clarifying the cause of disease. The greatest challenges today are the repetitive and time-consuming process of interpreting these complex MR images and the problem of unequal diagnostic results from physicians with diffe...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Guo, Xiaoxiang Huang, Wei Chen, Ichiro Nakamoto, Weiqing Zhuang, Hua Chen, Jie Feng, Jianfeng Wu
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-10401-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Magnetic resonance imaging of the lumbar spine is a key technique for clarifying the cause of disease. The greatest challenges today are the repetitive and time-consuming process of interpreting these complex MR images and the problem of unequal diagnostic results from physicians with different levels of experience. To address these issues, in this study, an improved YOLOv8 model (GE-YOLOv8) that combines a gradient search module and efficient channel attention was developed. To address the difficulty of intervertebral disc feature extraction, the GS module was introduced into the backbone network, which enhances the feature learning ability for the key structures through the gradient splitting strategy, and the number of parameters was reduced by 2.1%. The ECA module optimizes the weights of the feature channels and enhances the sensitivity of detection for small-target lesions, and the mAP50 was improved by 4.4% compared with that of YOLOv8. GE-YOLOv8 demonstrated the significance of this innovation on the basis of a P value <.001, with YOLOv8 as the baseline. The experimental results on a dataset from the Pingtan Branch of Union Hospital of Fujian Medical University and an external test dataset show that the model has excellent accuracy.
ISSN:2045-2322