3D-printed and In-situ prepared hydrogel anti-bacterial wound patch with silver nanoparticle embedded matrix
The application of wearable hydrogel wound patches has great potential in advancing the field of medicine. However, for high reach and large-scale utilization, the fabrication process of wearable hydrogel wound patches needs to be low-cost, reliable, and have high throughput. Therefore, the incorpor...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-02-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844025005663 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application of wearable hydrogel wound patches has great potential in advancing the field of medicine. However, for high reach and large-scale utilization, the fabrication process of wearable hydrogel wound patches needs to be low-cost, reliable, and have high throughput. Therefore, the incorporation of 3D-printing technology helps in providing a starting point for flexible, high throughput, mechanically enhanced, low-cost, and reliable antibacterial wound patches. 3D-printed patches can perform antibacterial behavior while exhibiting a fast fabrication process in a time range of less than 3 h. The fabricated patch exhibited good water retention, water vapor transmission rates a porosity values indicating that it has a promising potential to be commercialized as a wound patch. |
---|---|
ISSN: | 2405-8440 |