Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index

ObjectiveTo improve and validate a convolutional neural network (CNN)-based model for the automated scoring of nail psoriasis severity using the modified Nail Psoriasis Severity Index (mNAPSI) with adequate accuracy across all severity classes and without dependency on standardized conditions.Method...

Full description

Saved in:
Bibliographic Details
Main Authors: Stephan Kemenes, Liu Chang, Maja Schlereth, Rita Noversa de Sousa, Ioanna Minopoulou, Pauline Fenzl, Giulia Corte, Melek Yalcin Mutlu, Michael Wolfgang Höner, Ioannis Sagonas, Birte Coppers, Anna-Maria Liphardt, David Simon, Arnd Kleyer, Lukas Folle, Michael Sticherling, Georg Schett, Andreas Maier, Filippo Fagni
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-04-01
Series:Frontiers in Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849471403428937728
author Stephan Kemenes
Stephan Kemenes
Liu Chang
Maja Schlereth
Rita Noversa de Sousa
Rita Noversa de Sousa
Ioanna Minopoulou
Pauline Fenzl
Pauline Fenzl
Giulia Corte
Giulia Corte
Melek Yalcin Mutlu
Melek Yalcin Mutlu
Michael Wolfgang Höner
Michael Wolfgang Höner
Ioannis Sagonas
Ioannis Sagonas
Birte Coppers
Birte Coppers
Anna-Maria Liphardt
Anna-Maria Liphardt
David Simon
Arnd Kleyer
Lukas Folle
Michael Sticherling
Michael Sticherling
Georg Schett
Georg Schett
Andreas Maier
Filippo Fagni
Filippo Fagni
author_facet Stephan Kemenes
Stephan Kemenes
Liu Chang
Maja Schlereth
Rita Noversa de Sousa
Rita Noversa de Sousa
Ioanna Minopoulou
Pauline Fenzl
Pauline Fenzl
Giulia Corte
Giulia Corte
Melek Yalcin Mutlu
Melek Yalcin Mutlu
Michael Wolfgang Höner
Michael Wolfgang Höner
Ioannis Sagonas
Ioannis Sagonas
Birte Coppers
Birte Coppers
Anna-Maria Liphardt
Anna-Maria Liphardt
David Simon
Arnd Kleyer
Lukas Folle
Michael Sticherling
Michael Sticherling
Georg Schett
Georg Schett
Andreas Maier
Filippo Fagni
Filippo Fagni
author_sort Stephan Kemenes
collection DOAJ
description ObjectiveTo improve and validate a convolutional neural network (CNN)-based model for the automated scoring of nail psoriasis severity using the modified Nail Psoriasis Severity Index (mNAPSI) with adequate accuracy across all severity classes and without dependency on standardized conditions.MethodsPatients with psoriasis (PsO), psoriatic arthritis (PsA), and non-psoriatic controls including healthy individuals and patients with rheumatoid arthritis were included for training, while validation utilized an independent cohort of psoriatic patients. Nail photographs were pre-processed and segmented and mNAPSI scores were annotated by five expert readers. A CNN based on Bidirectional Encoder representation from Image Transformers (BEiT) architecture and pre-trained on ImageNet-22k was fine-tuned for mNAPSI classification. Model performance was compared with human annotations by using area under the receiver operating characteristic curve (AUROC) and other metrics. A reader study was performed to assess inter-rater variability.ResultsIn total, 460 patients providing 4,400 nail photographs were included in the training dataset. The independent validation dataset included 118 further patients who provided 929 nail photographs. The CNN demonstrated high classification performance on the training dataset, achieving mean (SD) AUROC of 86% ± 7% across mNAPSI classes. Performance remained robust on the independent validation dataset, with a mean AUROC of 80% ± 9%, despite variability in imaging conditions. Compared with human annotation, the CNN achieved a Pearson correlation of 0.94 on a patient-level, which remained consistent in the validation dataset.ConclusionWe developed and validated a CNN that enables the automated, objective scoring of nail psoriasis severity based on mNAPSI with high reliability and without need of image standardization. This approach has potential clinical utility for enabling a standardized time-efficient assessment of nail involvement in the psoriatic disease and possibly as a self-reporting tool.
format Article
id doaj-art-04e1f1502c9f447dabc7bd08e95e2b53
institution Kabale University
issn 2296-858X
language English
publishDate 2025-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Medicine
spelling doaj-art-04e1f1502c9f447dabc7bd08e95e2b532025-08-20T03:24:51ZengFrontiers Media S.A.Frontiers in Medicine2296-858X2025-04-011210.3389/fmed.2025.15744131574413Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity indexStephan Kemenes0Stephan Kemenes1Liu Chang2Maja Schlereth3Rita Noversa de Sousa4Rita Noversa de Sousa5Ioanna Minopoulou6Pauline Fenzl7Pauline Fenzl8Giulia Corte9Giulia Corte10Melek Yalcin Mutlu11Melek Yalcin Mutlu12Michael Wolfgang Höner13Michael Wolfgang Höner14Ioannis Sagonas15Ioannis Sagonas16Birte Coppers17Birte Coppers18Anna-Maria Liphardt19Anna-Maria Liphardt20David Simon21Arnd Kleyer22Lukas Folle23Michael Sticherling24Michael Sticherling25Georg Schett26Georg Schett27Andreas Maier28Filippo Fagni29Filippo Fagni30Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyPattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GermanyDepartment Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin, GermanyDepartment of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin, GermanyPattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GermanyDepartment of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyPattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GermanyDeutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyDepartment of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, GermanyObjectiveTo improve and validate a convolutional neural network (CNN)-based model for the automated scoring of nail psoriasis severity using the modified Nail Psoriasis Severity Index (mNAPSI) with adequate accuracy across all severity classes and without dependency on standardized conditions.MethodsPatients with psoriasis (PsO), psoriatic arthritis (PsA), and non-psoriatic controls including healthy individuals and patients with rheumatoid arthritis were included for training, while validation utilized an independent cohort of psoriatic patients. Nail photographs were pre-processed and segmented and mNAPSI scores were annotated by five expert readers. A CNN based on Bidirectional Encoder representation from Image Transformers (BEiT) architecture and pre-trained on ImageNet-22k was fine-tuned for mNAPSI classification. Model performance was compared with human annotations by using area under the receiver operating characteristic curve (AUROC) and other metrics. A reader study was performed to assess inter-rater variability.ResultsIn total, 460 patients providing 4,400 nail photographs were included in the training dataset. The independent validation dataset included 118 further patients who provided 929 nail photographs. The CNN demonstrated high classification performance on the training dataset, achieving mean (SD) AUROC of 86% ± 7% across mNAPSI classes. Performance remained robust on the independent validation dataset, with a mean AUROC of 80% ± 9%, despite variability in imaging conditions. Compared with human annotation, the CNN achieved a Pearson correlation of 0.94 on a patient-level, which remained consistent in the validation dataset.ConclusionWe developed and validated a CNN that enables the automated, objective scoring of nail psoriasis severity based on mNAPSI with high reliability and without need of image standardization. This approach has potential clinical utility for enabling a standardized time-efficient assessment of nail involvement in the psoriatic disease and possibly as a self-reporting tool.https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/fullpsoriasispsoriatic arthritisnail diseaseNAPSIMNAPSIartificial intelligence
spellingShingle Stephan Kemenes
Stephan Kemenes
Liu Chang
Maja Schlereth
Rita Noversa de Sousa
Rita Noversa de Sousa
Ioanna Minopoulou
Pauline Fenzl
Pauline Fenzl
Giulia Corte
Giulia Corte
Melek Yalcin Mutlu
Melek Yalcin Mutlu
Michael Wolfgang Höner
Michael Wolfgang Höner
Ioannis Sagonas
Ioannis Sagonas
Birte Coppers
Birte Coppers
Anna-Maria Liphardt
Anna-Maria Liphardt
David Simon
Arnd Kleyer
Lukas Folle
Michael Sticherling
Michael Sticherling
Georg Schett
Georg Schett
Andreas Maier
Filippo Fagni
Filippo Fagni
Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
Frontiers in Medicine
psoriasis
psoriatic arthritis
nail disease
NAPSI
MNAPSI
artificial intelligence
title Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
title_full Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
title_fullStr Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
title_full_unstemmed Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
title_short Advancement and independent validation of a deep learning-based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
title_sort advancement and independent validation of a deep learning based tool for automated scoring of nail psoriasis severity using the modified nail psoriasis severity index
topic psoriasis
psoriatic arthritis
nail disease
NAPSI
MNAPSI
artificial intelligence
url https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
work_keys_str_mv AT stephankemenes advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT stephankemenes advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT liuchang advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT majaschlereth advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT ritanoversadesousa advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT ritanoversadesousa advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT ioannaminopoulou advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT paulinefenzl advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT paulinefenzl advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT giuliacorte advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT giuliacorte advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT melekyalcinmutlu advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT melekyalcinmutlu advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT michaelwolfganghoner advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT michaelwolfganghoner advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT ioannissagonas advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT ioannissagonas advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT birtecoppers advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT birtecoppers advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT annamarialiphardt advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT annamarialiphardt advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT davidsimon advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT arndkleyer advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT lukasfolle advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT michaelsticherling advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT michaelsticherling advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT georgschett advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT georgschett advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT andreasmaier advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT filippofagni advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex
AT filippofagni advancementandindependentvalidationofadeeplearningbasedtoolforautomatedscoringofnailpsoriasisseverityusingthemodifiednailpsoriasisseverityindex