exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes

Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four gri...

Full description

Saved in:
Bibliographic Details
Main Authors: Jaehan Bae, Mario Flock, Andrés Izquierdo, Kazuhiro Kanagawa, Tomohiro Ono, Christophe Pinte, Daniel J. Price, Giovanni P. Rosotti, Gaylor Wafflard-Fernandez, Geoffroy Lesur, ‪Frédéric Masset, Sean M. Andrews, Marcelo Barraza-Alfaro, Myriam Benisty, Gianni Cataldi, Nicolás Cuello, Pietro Curone, Ian Czekala, Stefano Facchini, Daniele Fasano, Maria Galloway-Sprietsma, Cassandra Hall, Iain Hammond, Jane Huang, Giuseppe Lodato, Cristiano Longarini, Jochen Stadler, Richard Teague, David J. Wilner, Andrew J. Winter, Lisa Wölfer, Tomohiro C. Yoshida
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/adc436
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849698031587295232
author Jaehan Bae
Mario Flock
Andrés Izquierdo
Kazuhiro Kanagawa
Tomohiro Ono
Christophe Pinte
Daniel J. Price
Giovanni P. Rosotti
Gaylor Wafflard-Fernandez
Geoffroy Lesur
‪Frédéric Masset
Sean M. Andrews
Marcelo Barraza-Alfaro
Myriam Benisty
Gianni Cataldi
Nicolás Cuello
Pietro Curone
Ian Czekala
Stefano Facchini
Daniele Fasano
Maria Galloway-Sprietsma
Cassandra Hall
Iain Hammond
Jane Huang
Giuseppe Lodato
Cristiano Longarini
Jochen Stadler
Richard Teague
David J. Wilner
Andrew J. Winter
Lisa Wölfer
Tomohiro C. Yoshida
author_facet Jaehan Bae
Mario Flock
Andrés Izquierdo
Kazuhiro Kanagawa
Tomohiro Ono
Christophe Pinte
Daniel J. Price
Giovanni P. Rosotti
Gaylor Wafflard-Fernandez
Geoffroy Lesur
‪Frédéric Masset
Sean M. Andrews
Marcelo Barraza-Alfaro
Myriam Benisty
Gianni Cataldi
Nicolás Cuello
Pietro Curone
Ian Czekala
Stefano Facchini
Daniele Fasano
Maria Galloway-Sprietsma
Cassandra Hall
Iain Hammond
Jane Huang
Giuseppe Lodato
Cristiano Longarini
Jochen Stadler
Richard Teague
David J. Wilner
Andrew J. Winter
Lisa Wölfer
Tomohiro C. Yoshida
author_sort Jaehan Bae
collection DOAJ
description Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes ( FARGO3D , Idefix , Athena++ , and PLUTO ) and a smoothed-particle hydrodynamics code ( Phantom ), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes ( mcfost and RADMC-3D ) to calculate disk temperatures and create synthetic ^12 CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER . We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within ≲3% everywhere in the domain. In synthetic ^12 CO channel maps, this results in brightness temperature differences within ±1.5 K in all our models. This good agreement ensures consistent retrieval of planet’s radial/azimuthal location with only a few percent of scatter, with velocity perturbations varying ≲20% among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations.
format Article
id doaj-art-04d20a8b9a0e4ba89410329db595250f
institution DOAJ
issn 2041-8205
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj-art-04d20a8b9a0e4ba89410329db595250f2025-08-20T03:19:02ZengIOP PublishingThe Astrophysical Journal Letters2041-82052025-01-019841L1210.3847/2041-8213/adc436exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer CodesJaehan Bae0https://orcid.org/0000-0001-7258-770XMario Flock1https://orcid.org/0000-0002-9298-3029Andrés Izquierdo2https://orcid.org/0000-0001-8446-3026Kazuhiro Kanagawa3https://orcid.org/0000-0001-7235-2417Tomohiro Ono4https://orcid.org/0000-0001-8524-6939Christophe Pinte5https://orcid.org/0000-0001-5907-5179Daniel J. Price6https://orcid.org/0000-0002-4716-4235Giovanni P. Rosotti7https://orcid.org/0000-0003-4853-5736Gaylor Wafflard-Fernandez8https://orcid.org/0000-0002-3468-9577Geoffroy Lesur9https://orcid.org/0000-0002-8896-9435‪Frédéric Masset10https://orcid.org/0000-0002-9626-2210Sean M. Andrews11https://orcid.org/0000-0003-2253-2270Marcelo Barraza-Alfaro12https://orcid.org/0000-0001-6378-7873Myriam Benisty13https://orcid.org/0000-0002-7695-7605Gianni Cataldi14https://orcid.org/0000-0002-2700-9676Nicolás Cuello15https://orcid.org/0000-0003-3713-8073Pietro Curone16https://orcid.org/0000-0003-2045-2154Ian Czekala17https://orcid.org/0000-0002-1483-8811Stefano Facchini18https://orcid.org/0000-0003-4689-2684Daniele Fasano19https://orcid.org/0000-0003-4679-4072Maria Galloway-Sprietsma20https://orcid.org/0000-0002-5503-5476Cassandra Hall21https://orcid.org/0000-0002-8138-0425Iain Hammond22https://orcid.org/0000-0003-1502-4315Jane Huang23https://orcid.org/0000-0001-6947-6072Giuseppe Lodato24https://orcid.org/0000-0002-2357-7692Cristiano Longarini25https://orcid.org/0000-0003-4663-0318Jochen Stadler26https://orcid.org/0000-0002-0491-143XRichard Teague27https://orcid.org/0000-0003-1534-5186David J. Wilner28https://orcid.org/0000-0003-1526-7587Andrew J. Winter29https://orcid.org/0000-0002-7501-9801Lisa Wölfer30https://orcid.org/0000-0002-7212-2416Tomohiro C. Yoshida31https://orcid.org/0000-0001-8002-8473Department of Astronomy, University of Florida , Gainesville, FL 32611, USAMax-Planck Institute for Astronomy (MPIA) , Königstuhl 17, 69117 Heidelberg, GermanyDepartment of Astronomy, University of Florida , Gainesville, FL 32611, USA; Leiden Observatory, Leiden University , P.O. Box 9513, NL-2300 RA Leiden, The Netherlands; European Southern Observatory , Karl-Schwarzschild-Str. 2, D-85748 Garching bei München, GermanyCollege of Science, Ibaraki University , 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, JapanSchool of Natural Sciences, Institute for Advanced Study , Princeton, NJ 08544, USAUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, France; School of Physics and Astronomy, Monash University , VIC 3800, AustraliaSchool of Physics and Astronomy, Monash University , VIC 3800, AustraliaDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, I-20133 Milano, ItalyUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, FranceUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, FranceInstituto de Ciencias Físicas, Universidad Nacional Autonoma de México , Av. Universidad s/n, 62210 Cuernavaca, Mor., MéxicoCenter for Astrophysics—Harvard & Smithsonian , Cambridge, MA 02138, USADepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USAMax-Planck Institute for Astronomy (MPIA) , Königstuhl 17, 69117 Heidelberg, Germany; Université Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceNational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, FranceDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, Italy; Departamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Las Condes, Santiago, ChileSchool of Physics & Astronomy, University of St. Andrews , North Haugh, St. Andrews KY16 9SS, UKDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, ItalyUniversité Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceDepartment of Astronomy, University of Florida , Gainesville, FL 32611, USADepartment of Physics and Astronomy, The University of Georgia , Athens, GA 30602, USA; Center for Simulational Physics, The University of Georgia , Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia , Athens, GA, 30602, USASchool of Physics and Astronomy, Monash University , VIC 3800, AustraliaDepartment of Astronomy, Columbia University , 538 W. 120th Street, Pupin Hall, New York, NY 10027, USADipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, ItalyDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, Italy; Institute of Astronomy, University of Cambridge , Madingley Road, CB3 0HA, Cambridge, UKUniversité Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USACenter for Astrophysics—Harvard & Smithsonian , Cambridge, MA 02138, USAMax-Planck Institute for Astronomy (MPIA) , Königstuhl 17, 69117 Heidelberg, Germany; Université Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USANational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; Department of Astronomical Science, The Graduate University for Advanced Studies , SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanForward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes ( FARGO3D , Idefix , Athena++ , and PLUTO ) and a smoothed-particle hydrodynamics code ( Phantom ), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes ( mcfost and RADMC-3D ) to calculate disk temperatures and create synthetic ^12 CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER . We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within ≲3% everywhere in the domain. In synthetic ^12 CO channel maps, this results in brightness temperature differences within ±1.5 K in all our models. This good agreement ensures consistent retrieval of planet’s radial/azimuthal location with only a few percent of scatter, with velocity perturbations varying ≲20% among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations.https://doi.org/10.3847/2041-8213/adc436Protoplanetary disksPlanetary-disk interactionsHydrodynamical simulationsRadiative transfer simulations
spellingShingle Jaehan Bae
Mario Flock
Andrés Izquierdo
Kazuhiro Kanagawa
Tomohiro Ono
Christophe Pinte
Daniel J. Price
Giovanni P. Rosotti
Gaylor Wafflard-Fernandez
Geoffroy Lesur
‪Frédéric Masset
Sean M. Andrews
Marcelo Barraza-Alfaro
Myriam Benisty
Gianni Cataldi
Nicolás Cuello
Pietro Curone
Ian Czekala
Stefano Facchini
Daniele Fasano
Maria Galloway-Sprietsma
Cassandra Hall
Iain Hammond
Jane Huang
Giuseppe Lodato
Cristiano Longarini
Jochen Stadler
Richard Teague
David J. Wilner
Andrew J. Winter
Lisa Wölfer
Tomohiro C. Yoshida
exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
The Astrophysical Journal Letters
Protoplanetary disks
Planetary-disk interactions
Hydrodynamical simulations
Radiative transfer simulations
title exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
title_full exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
title_fullStr exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
title_full_unstemmed exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
title_short exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
title_sort exoalma vii benchmarking hydrodynamics and radiative transfer codes
topic Protoplanetary disks
Planetary-disk interactions
Hydrodynamical simulations
Radiative transfer simulations
url https://doi.org/10.3847/2041-8213/adc436
work_keys_str_mv AT jaehanbae exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT marioflock exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT andresizquierdo exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT kazuhirokanagawa exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT tomohiroono exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT christophepinte exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT danieljprice exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT giovanniprosotti exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT gaylorwafflardfernandez exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT geoffroylesur exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT fredericmasset exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT seanmandrews exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT marcelobarrazaalfaro exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT myriambenisty exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT giannicataldi exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT nicolascuello exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT pietrocurone exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT ianczekala exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT stefanofacchini exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT danielefasano exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT mariagallowaysprietsma exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT cassandrahall exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT iainhammond exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT janehuang exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT giuseppelodato exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT cristianolongarini exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT jochenstadler exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT richardteague exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT davidjwilner exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT andrewjwinter exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT lisawolfer exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes
AT tomohirocyoshida exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes