exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes
Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four gri...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | The Astrophysical Journal Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.3847/2041-8213/adc436 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849698031587295232 |
|---|---|
| author | Jaehan Bae Mario Flock Andrés Izquierdo Kazuhiro Kanagawa Tomohiro Ono Christophe Pinte Daniel J. Price Giovanni P. Rosotti Gaylor Wafflard-Fernandez Geoffroy Lesur Frédéric Masset Sean M. Andrews Marcelo Barraza-Alfaro Myriam Benisty Gianni Cataldi Nicolás Cuello Pietro Curone Ian Czekala Stefano Facchini Daniele Fasano Maria Galloway-Sprietsma Cassandra Hall Iain Hammond Jane Huang Giuseppe Lodato Cristiano Longarini Jochen Stadler Richard Teague David J. Wilner Andrew J. Winter Lisa Wölfer Tomohiro C. Yoshida |
| author_facet | Jaehan Bae Mario Flock Andrés Izquierdo Kazuhiro Kanagawa Tomohiro Ono Christophe Pinte Daniel J. Price Giovanni P. Rosotti Gaylor Wafflard-Fernandez Geoffroy Lesur Frédéric Masset Sean M. Andrews Marcelo Barraza-Alfaro Myriam Benisty Gianni Cataldi Nicolás Cuello Pietro Curone Ian Czekala Stefano Facchini Daniele Fasano Maria Galloway-Sprietsma Cassandra Hall Iain Hammond Jane Huang Giuseppe Lodato Cristiano Longarini Jochen Stadler Richard Teague David J. Wilner Andrew J. Winter Lisa Wölfer Tomohiro C. Yoshida |
| author_sort | Jaehan Bae |
| collection | DOAJ |
| description | Forward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes ( FARGO3D , Idefix , Athena++ , and PLUTO ) and a smoothed-particle hydrodynamics code ( Phantom ), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes ( mcfost and RADMC-3D ) to calculate disk temperatures and create synthetic ^12 CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER . We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within ≲3% everywhere in the domain. In synthetic ^12 CO channel maps, this results in brightness temperature differences within ±1.5 K in all our models. This good agreement ensures consistent retrieval of planet’s radial/azimuthal location with only a few percent of scatter, with velocity perturbations varying ≲20% among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations. |
| format | Article |
| id | doaj-art-04d20a8b9a0e4ba89410329db595250f |
| institution | DOAJ |
| issn | 2041-8205 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | IOP Publishing |
| record_format | Article |
| series | The Astrophysical Journal Letters |
| spelling | doaj-art-04d20a8b9a0e4ba89410329db595250f2025-08-20T03:19:02ZengIOP PublishingThe Astrophysical Journal Letters2041-82052025-01-019841L1210.3847/2041-8213/adc436exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer CodesJaehan Bae0https://orcid.org/0000-0001-7258-770XMario Flock1https://orcid.org/0000-0002-9298-3029Andrés Izquierdo2https://orcid.org/0000-0001-8446-3026Kazuhiro Kanagawa3https://orcid.org/0000-0001-7235-2417Tomohiro Ono4https://orcid.org/0000-0001-8524-6939Christophe Pinte5https://orcid.org/0000-0001-5907-5179Daniel J. Price6https://orcid.org/0000-0002-4716-4235Giovanni P. Rosotti7https://orcid.org/0000-0003-4853-5736Gaylor Wafflard-Fernandez8https://orcid.org/0000-0002-3468-9577Geoffroy Lesur9https://orcid.org/0000-0002-8896-9435Frédéric Masset10https://orcid.org/0000-0002-9626-2210Sean M. Andrews11https://orcid.org/0000-0003-2253-2270Marcelo Barraza-Alfaro12https://orcid.org/0000-0001-6378-7873Myriam Benisty13https://orcid.org/0000-0002-7695-7605Gianni Cataldi14https://orcid.org/0000-0002-2700-9676Nicolás Cuello15https://orcid.org/0000-0003-3713-8073Pietro Curone16https://orcid.org/0000-0003-2045-2154Ian Czekala17https://orcid.org/0000-0002-1483-8811Stefano Facchini18https://orcid.org/0000-0003-4689-2684Daniele Fasano19https://orcid.org/0000-0003-4679-4072Maria Galloway-Sprietsma20https://orcid.org/0000-0002-5503-5476Cassandra Hall21https://orcid.org/0000-0002-8138-0425Iain Hammond22https://orcid.org/0000-0003-1502-4315Jane Huang23https://orcid.org/0000-0001-6947-6072Giuseppe Lodato24https://orcid.org/0000-0002-2357-7692Cristiano Longarini25https://orcid.org/0000-0003-4663-0318Jochen Stadler26https://orcid.org/0000-0002-0491-143XRichard Teague27https://orcid.org/0000-0003-1534-5186David J. Wilner28https://orcid.org/0000-0003-1526-7587Andrew J. Winter29https://orcid.org/0000-0002-7501-9801Lisa Wölfer30https://orcid.org/0000-0002-7212-2416Tomohiro C. Yoshida31https://orcid.org/0000-0001-8002-8473Department of Astronomy, University of Florida , Gainesville, FL 32611, USAMax-Planck Institute for Astronomy (MPIA) , Königstuhl 17, 69117 Heidelberg, GermanyDepartment of Astronomy, University of Florida , Gainesville, FL 32611, USA; Leiden Observatory, Leiden University , P.O. Box 9513, NL-2300 RA Leiden, The Netherlands; European Southern Observatory , Karl-Schwarzschild-Str. 2, D-85748 Garching bei München, GermanyCollege of Science, Ibaraki University , 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, JapanSchool of Natural Sciences, Institute for Advanced Study , Princeton, NJ 08544, USAUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, France; School of Physics and Astronomy, Monash University , VIC 3800, AustraliaSchool of Physics and Astronomy, Monash University , VIC 3800, AustraliaDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, I-20133 Milano, ItalyUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, FranceUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, FranceInstituto de Ciencias Físicas, Universidad Nacional Autonoma de México , Av. Universidad s/n, 62210 Cuernavaca, Mor., MéxicoCenter for Astrophysics—Harvard & Smithsonian , Cambridge, MA 02138, USADepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USAMax-Planck Institute for Astronomy (MPIA) , Königstuhl 17, 69117 Heidelberg, Germany; Université Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceNational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanUniversity Grenoble Alpes , CNRS, IPAG, 38000 Grenoble, FranceDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, Italy; Departamento de Astronomía, Universidad de Chile , Camino El Observatorio 1515, Las Condes, Santiago, ChileSchool of Physics & Astronomy, University of St. Andrews , North Haugh, St. Andrews KY16 9SS, UKDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, ItalyUniversité Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceDepartment of Astronomy, University of Florida , Gainesville, FL 32611, USADepartment of Physics and Astronomy, The University of Georgia , Athens, GA 30602, USA; Center for Simulational Physics, The University of Georgia , Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia , Athens, GA, 30602, USASchool of Physics and Astronomy, Monash University , VIC 3800, AustraliaDepartment of Astronomy, Columbia University , 538 W. 120th Street, Pupin Hall, New York, NY 10027, USADipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, ItalyDipartimento di Fisica, Università degli Studi di Milano , Via Celoria 16, 20133 Milano, Italy; Institute of Astronomy, University of Cambridge , Madingley Road, CB3 0HA, Cambridge, UKUniversité Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USACenter for Astrophysics—Harvard & Smithsonian , Cambridge, MA 02138, USAMax-Planck Institute for Astronomy (MPIA) , Königstuhl 17, 69117 Heidelberg, Germany; Université Côte d’Azur , Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06300 Nice, FranceDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USANational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; Department of Astronomical Science, The Graduate University for Advanced Studies , SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanForward modeling is often used to interpret substructures observed in protoplanetary disks. To ensure the robustness and consistency of the current forward-modeling approach from the community, we conducted a systematic comparison of various hydrodynamics and radiative transfer codes. Using four grid-based hydrodynamics codes ( FARGO3D , Idefix , Athena++ , and PLUTO ) and a smoothed-particle hydrodynamics code ( Phantom ), we simulated a protoplanetary disk with an embedded giant planet. We then used two radiative transfer codes ( mcfost and RADMC-3D ) to calculate disk temperatures and create synthetic ^12 CO cubes. Finally, we retrieved the location of the planet from the synthetic cubes using DISCMINER . We found strong consistency between the hydrodynamics codes, particularly in the density and velocity perturbations associated with planet-driven spirals. We also found a good agreement between the two radiative transfer codes: the disk temperature in mcfost and RADMC-3D models agrees within ≲3% everywhere in the domain. In synthetic ^12 CO channel maps, this results in brightness temperature differences within ±1.5 K in all our models. This good agreement ensures consistent retrieval of planet’s radial/azimuthal location with only a few percent of scatter, with velocity perturbations varying ≲20% among the models. Notably, while the planet-opened gap is shallower in the Phantom simulation, we found that this does not impact the planet location retrieval. In summary, our results demonstrate that any combination of the tested hydrodynamics and radiative transfer codes can be used to reliably model and interpret planet-driven kinematic perturbations.https://doi.org/10.3847/2041-8213/adc436Protoplanetary disksPlanetary-disk interactionsHydrodynamical simulationsRadiative transfer simulations |
| spellingShingle | Jaehan Bae Mario Flock Andrés Izquierdo Kazuhiro Kanagawa Tomohiro Ono Christophe Pinte Daniel J. Price Giovanni P. Rosotti Gaylor Wafflard-Fernandez Geoffroy Lesur Frédéric Masset Sean M. Andrews Marcelo Barraza-Alfaro Myriam Benisty Gianni Cataldi Nicolás Cuello Pietro Curone Ian Czekala Stefano Facchini Daniele Fasano Maria Galloway-Sprietsma Cassandra Hall Iain Hammond Jane Huang Giuseppe Lodato Cristiano Longarini Jochen Stadler Richard Teague David J. Wilner Andrew J. Winter Lisa Wölfer Tomohiro C. Yoshida exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes The Astrophysical Journal Letters Protoplanetary disks Planetary-disk interactions Hydrodynamical simulations Radiative transfer simulations |
| title | exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes |
| title_full | exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes |
| title_fullStr | exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes |
| title_full_unstemmed | exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes |
| title_short | exoALMA. VII. Benchmarking Hydrodynamics and Radiative Transfer Codes |
| title_sort | exoalma vii benchmarking hydrodynamics and radiative transfer codes |
| topic | Protoplanetary disks Planetary-disk interactions Hydrodynamical simulations Radiative transfer simulations |
| url | https://doi.org/10.3847/2041-8213/adc436 |
| work_keys_str_mv | AT jaehanbae exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT marioflock exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT andresizquierdo exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT kazuhirokanagawa exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT tomohiroono exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT christophepinte exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT danieljprice exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT giovanniprosotti exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT gaylorwafflardfernandez exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT geoffroylesur exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT fredericmasset exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT seanmandrews exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT marcelobarrazaalfaro exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT myriambenisty exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT giannicataldi exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT nicolascuello exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT pietrocurone exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT ianczekala exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT stefanofacchini exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT danielefasano exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT mariagallowaysprietsma exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT cassandrahall exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT iainhammond exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT janehuang exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT giuseppelodato exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT cristianolongarini exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT jochenstadler exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT richardteague exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT davidjwilner exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT andrewjwinter exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT lisawolfer exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes AT tomohirocyoshida exoalmaviibenchmarkinghydrodynamicsandradiativetransfercodes |