Radiogenic Lead with Dominant Content of 208Pb: New Coolant and Neutron Moderator for Innovative Nuclear Facilities

As a rule materials of small atomic weight (light and heavy water, graphite, and so on) are used as neutron moderators and reflectors. A new very heavy atomic weight moderator is proposed—radiogenic lead consisting mainly of isotope 208Pb. It is characterized by extremely low neutron radiative captu...

Full description

Saved in:
Bibliographic Details
Main Authors: A. N. Shmelev, G. G. Kulikov, V. A. Apse, E. G. Kulikov, V. V. Artisyuk
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2011/252903
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a rule materials of small atomic weight (light and heavy water, graphite, and so on) are used as neutron moderators and reflectors. A new very heavy atomic weight moderator is proposed—radiogenic lead consisting mainly of isotope 208Pb. It is characterized by extremely low neutron radiative capture cross-section (0.23 mbarn for thermal neutrons, i.e., less than that for graphite and deuterium) and highest albedo of thermal neutrons. It is evaluated that the use of radiogenic lead makes it possible to slow down the chain fission reaction on prompt neutrons in a fast reactor. This can increase safety of the fast reactors and reduce as well requirements pertaining to the fuel fabrication technology. Radiogenic lead with high 208Pb content as a liquid-metal coolant of fast reactors helps to achieve a favorable (negative) reactivity coefficient on coolant temperature. It is noteworthy that radiogenic lead with high 208Pb content may be extracted from thorium (as well as thorium-uranium) ores without isotope separation. This has been confirmed experimentally by the investigations performed at San Paulo University, Brazil.
ISSN:1687-6075
1687-6083