Learning Coupled Meteorological Characteristics Aids Short-Term Photovoltaic Interval Prediction Methods

In response to the challenges posed by renewable energy integration, this study introduces a hybrid Attention-TCN-LSTM model for short-term photovoltaic (PV) power forecasting. The LSTM captures the sequence characteristics of PV output, which are then combined with the meteorological sequence featu...

Full description

Saved in:
Bibliographic Details
Main Authors: Yue Guo, Yu Song, Zilong Lai, Xuyang Wang, Licheng Wang, Hui Qin
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/308
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In response to the challenges posed by renewable energy integration, this study introduces a hybrid Attention-TCN-LSTM model for short-term photovoltaic (PV) power forecasting. The LSTM captures the sequence characteristics of PV output, which are then combined with the meteorological sequence features extracted by the Attention-TCN module. The model leverages the strengths of the TCN, the LSTM, and the self-attention mechanism to enhance prediction accuracy and construct reliable prediction intervals. Aiming to optimize both performance and efficiency, the PSO algorithm is used for hyperparameter optimization. Ablation studies and comparisons with other models confirm the effectiveness, accuracy and robustness of the proposed model. This hybrid approach contributes to improved renewable energy integration, offering a more stable and reliable energy supply. Future work will focus on incorporating intelligent systems for autonomous risk management and real-time control of dynamic PV output fluctuations.
ISSN:1996-1073