Nodal Solutions for Problems with Mean Curvature Operator in Minkowski Space with Nonlinearity Jumping Only at the Origin

In this paper, we establish a unilateral global bifurcation result for half-linear perturbation problems with mean curvature operator in Minkowski space. As applications of the abovementioned result, we shall prove the existence of nodal solutions for the following problem −div∇v/1−∇v2=αxv++βxv−+λax...

Full description

Saved in:
Bibliographic Details
Main Author: Wenguo Shen
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/9801931
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we establish a unilateral global bifurcation result for half-linear perturbation problems with mean curvature operator in Minkowski space. As applications of the abovementioned result, we shall prove the existence of nodal solutions for the following problem −div∇v/1−∇v2=αxv++βxv−+λaxfv, in BR0,vx=0, on ∂BR0, where λ ≠ 0 is a parameter, R is a positive constant, and BR0=x∈ℝN:x<R is the standard open ball in the Euclidean space ℝNN≥1 which is centered at the origin and has radius R. a(|x|) ∈ C[0, R] is positive, v+ = max{v, 0}, v− = −min{v, 0}, α(|x|), β(|x|) ∈ C[0, R]; f∈Cℝ,ℝ, s f (s) > 0 for s ≠ 0, and f0 ∈ [0, ∞], where f0 = lim|s|⟶0 f(s)/s. We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.
ISSN:2314-8896
2314-8888