Rotating Polarization Magnetometry
Precise magnetometry is vital in numerous scientific and technological applications. At the forefront of sensitivity, optical atomic magnetometry, particularly techniques utilizing nonlinear magneto-optical rotation (NMOR), enables ultraprecise measurements across a broad field range. Despite their...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/9/2682 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Precise magnetometry is vital in numerous scientific and technological applications. At the forefront of sensitivity, optical atomic magnetometry, particularly techniques utilizing nonlinear magneto-optical rotation (NMOR), enables ultraprecise measurements across a broad field range. Despite their potential, these techniques reportedly lose sensitivity in higher magnetic fields, which is attributed to the alignment-to-orientation conversion (AOC) process. In our study, we utilized light with continuously rotating linear polarization to avoid the AOC, which produced robust optical signals and achieving high magnetometric sensitivity over a dynamic range nearly three times greater than Earth’s magnetic field. We demonstrated that employing rotating polarization surpasses other NMOR techniques that use modulated light. Our findings also indicate that the previously observed signal deterioration was not due to the AOC, suggesting an alternative cause for this decline. |
|---|---|
| ISSN: | 1424-8220 |