An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT) technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain metho...

Full description

Saved in:
Bibliographic Details
Main Authors: Yingjie Yu, Yong Li
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2017/8173643
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT) technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM). The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs) that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz). Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI) scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.
ISSN:1687-9309
1687-9317