Automated Quality Control of Cleaning Processes in Automotive Components Using Blob Analysis

This study presents an automated computer vision system for assessing the cleanliness of plastic mirror caps used in the automotive industry after a washing process. These components are highly visible and require optimal surface conditions prior to painting, making the detection of residual contami...

Full description

Saved in:
Bibliographic Details
Main Authors: Simone Mari, Giovanni Bucci, Fabrizio Ciancetta, Edoardo Fiorucci, Andrea Fioravanti
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/9/2710
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents an automated computer vision system for assessing the cleanliness of plastic mirror caps used in the automotive industry after a washing process. These components are highly visible and require optimal surface conditions prior to painting, making the detection of residual contaminants critical for quality assurance. The system acquires high-resolution monochrome images under various lighting configurations, including natural light and infrared (IR) at 850 nm and 940 nm, with different angles of incidence. Four blob detection algorithms—adaptive thresholding, Laplacian of Gaussian (LoG), Difference of Gaussians (DoG), and Determinant of Hessian (DoH)—were implemented and evaluated based on their ability to detect surface impurities. Performance was assessed by comparing the total detected blob area before and after the cleaning process, providing a proxy for both sensitivity and false positive rate. Among the tested methods, adaptive thresholding under 30° natural light produced the best results, with a statistically significant z-score of +2.05 in the pre-wash phase and reduced false detections in post-wash conditions. The LoG and DoG methods were more prone to spurious detections, while DoH demonstrated intermediate performance but struggled with reflective surfaces. The proposed approach offers a cost-effective and scalable solution for real-time quality control in industrial environments, with the potential to improve process reliability and reduce waste due to surface defects.
ISSN:1424-8220