Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling

Abstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface tempera...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaniska Mallick, Dennis Baldocchi, Andrew Jarvis, Tian Hu, Ivonne Trebs, Mauro Sulis, Nishan Bhattarai, Christian Bossung, Yomna Eid, Jamie Cleverly, Jason Beringer, William Woodgate, Richard Silberstein, Nina Hinko‐Najera, Wayne S. Meyer, Darren Ghent, Zoltan Szantoi, Gilles Boulet, William P. Kustas
Format: Article
Language:English
Published: Wiley 2022-08-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2021GL097568
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non‐parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio‐temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research.
ISSN:0094-8276
1944-8007