A Fully Coupled Numerical Simulation Model for Bottom-Water Gas Reservoirs Integrating Horizontal Wellbore, ICD Screens, and Zonal Water Control: Development, Validation, and Optimization Strategies

To address the challenges of water coning and early water breakthrough commonly encountered during the development of bottom-water gas reservoirs, this study establishes a fully coupled numerical simulation model integrating a horizontal wellbore, inflow control device (ICD) screens, and a zonal wat...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongsheng An, Zhongwen Sun, Yiran Kang, Guangning Yang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/14/3607
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the challenges of water coning and early water breakthrough commonly encountered during the development of bottom-water gas reservoirs, this study establishes a fully coupled numerical simulation model integrating a horizontal wellbore, inflow control device (ICD) screens, and a zonal water control system. A novel “dual inflow performance index” method is introduced for the first time, enabling separate calculation of the pressure drops induced by gas and water phases flowing through the ICDs, thereby improving the accuracy of pressure simulations throughout the production lifecycle. The model divides the entire production system into four physically distinct subsystems, the bottom-water gas reservoir, ICD screens, production compartments, and the horizontal wellbore, which are dynamically coupled through transient interflow exchange. Based on geological parameters from the SPE10 dataset, the model simulates realistic production scenarios. The results show that the proposed model accurately captures the time-dependent increase in ICD pressure drop as fluid properties evolve during production. Moreover, the zonal water control method outperforms the single ICD-based control strategy in water control performance, achieving a 23% reduction in cumulative water production. Additionally, the water control intensity of the ICD screens increases nonlinearly with the reduction in the number of openings. In highly heterogeneous reservoirs with significant permeability contrast, effective suppression of water coning can only be achieved by setting a minimal number of openings in the high-permeability compartments, resulting in up to a 15% reduction in cumulative water production. The timing of production compartment shutdown exerts a significant influence on water control performance. The optimal strategy is to first identify the water breakthrough point through unconstrained production simulation as production with all eight ICD screen openings fully open and then shut down the high-permeability production compartment around this critical time. This approach can suppress cumulative water production by up to 27%. Overall, the proposed model offers a practical and robust tool for optimizing completion design and water control strategies in complex bottom-water gas reservoirs.
ISSN:1996-1073