An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets

This study presents an innovative iterative method designed to approximate common fixed points of generalized contractive mappings. We provide theorems that confirm the convergence and stability of the proposed iteration scheme, further illustrated through examples and visual demonstrations. Moreove...

Full description

Saved in:
Bibliographic Details
Main Authors: Khairul Habib Alam, Yumnam Rohen, Anita Tomar, Naeem Saleem, Maggie Aphane, Asima Razzaque
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/1/40
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588389196496896
author Khairul Habib Alam
Yumnam Rohen
Anita Tomar
Naeem Saleem
Maggie Aphane
Asima Razzaque
author_facet Khairul Habib Alam
Yumnam Rohen
Anita Tomar
Naeem Saleem
Maggie Aphane
Asima Razzaque
author_sort Khairul Habib Alam
collection DOAJ
description This study presents an innovative iterative method designed to approximate common fixed points of generalized contractive mappings. We provide theorems that confirm the convergence and stability of the proposed iteration scheme, further illustrated through examples and visual demonstrations. Moreover, we apply <i>s</i>-convexity to the iteration procedure to construct orbits under convexity conditions, and we present a theorem that determines the condition when a sequence diverges to infinity, known as the escape criterion, for the transcendental sine function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(</mo><msup><mi>u</mi><mi>m</mi></msup><mo>)</mo><mo>−</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo><mi>α</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. Additionally, we generate chaotic fractals for this orbit, governed by escape criteria, with numerical examples implemented using MATHEMATICA software. Visual representations are included to demonstrate how various parameters influence the coloration and dynamics of the fractals. Furthermore, we observe that enlarging the Mandelbrot set near its petal edges reveals the Julia set, indicating that every point in the Mandelbrot set contains substantial data corresponding to the Julia set’s structure.
format Article
id doaj-art-0396417c98bd4a3185e38428c584da31
institution Kabale University
issn 2504-3110
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-0396417c98bd4a3185e38428c584da312025-01-24T13:33:28ZengMDPI AGFractal and Fractional2504-31102025-01-01914010.3390/fractalfract9010040An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot SetsKhairul Habib Alam0Yumnam Rohen1Anita Tomar2Naeem Saleem3Maggie Aphane4Asima Razzaque5Department of Mathematics, National Institute of Technology Manipur, Imphal 795004, Manipur, IndiaDepartment of Mathematics, Manipur University, Imphal 795003, Manipur, IndiaPt. L. M. S. Campus, Sridev Suman Uttarakhand University, Rishikesh 249201, Uttarakhand, IndiaDepartment of Mathematics, University of Management and Technology, Lahore 54770, PakistanDepartment of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Pretoria 0204, South AfricaDepartment of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi ArabiaThis study presents an innovative iterative method designed to approximate common fixed points of generalized contractive mappings. We provide theorems that confirm the convergence and stability of the proposed iteration scheme, further illustrated through examples and visual demonstrations. Moreover, we apply <i>s</i>-convexity to the iteration procedure to construct orbits under convexity conditions, and we present a theorem that determines the condition when a sequence diverges to infinity, known as the escape criterion, for the transcendental sine function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">sin</mo><mo>(</mo><msup><mi>u</mi><mi>m</mi></msup><mo>)</mo><mo>−</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo><mi>α</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. Additionally, we generate chaotic fractals for this orbit, governed by escape criteria, with numerical examples implemented using MATHEMATICA software. Visual representations are included to demonstrate how various parameters influence the coloration and dynamics of the fractals. Furthermore, we observe that enlarging the Mandelbrot set near its petal edges reveals the Julia set, indicating that every point in the Mandelbrot set contains substantial data corresponding to the Julia set’s structure.https://www.mdpi.com/2504-3110/9/1/40efficiencystabilityescape criterionfractalsJulia setMandelbrot set
spellingShingle Khairul Habib Alam
Yumnam Rohen
Anita Tomar
Naeem Saleem
Maggie Aphane
Asima Razzaque
An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets
Fractal and Fractional
efficiency
stability
escape criterion
fractals
Julia set
Mandelbrot set
title An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets
title_full An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets
title_fullStr An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets
title_full_unstemmed An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets
title_short An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets
title_sort effective iterative process utilizing transcendental sine functions for the generation of julia and mandelbrot sets
topic efficiency
stability
escape criterion
fractals
Julia set
Mandelbrot set
url https://www.mdpi.com/2504-3110/9/1/40
work_keys_str_mv AT khairulhabibalam aneffectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT yumnamrohen aneffectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT anitatomar aneffectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT naeemsaleem aneffectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT maggieaphane aneffectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT asimarazzaque aneffectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT khairulhabibalam effectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT yumnamrohen effectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT anitatomar effectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT naeemsaleem effectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT maggieaphane effectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets
AT asimarazzaque effectiveiterativeprocessutilizingtranscendentalsinefunctionsforthegenerationofjuliaandmandelbrotsets