Finite eigenfuction approximations for continuous spectrum operators

In this paper, we introduce a new formulation of the theory of continuous spectrum eigenfunction expansions for self-adjoint operators and analyze the question of when operators may be approximated in an operator norm by finite sums of multiples of eigenprojections of multiplicity one. The theory is...

Full description

Saved in:
Bibliographic Details
Main Author: Robert M. Kauffman
Format: Article
Language:English
Published: Wiley 1993-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171293000018
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we introduce a new formulation of the theory of continuous spectrum eigenfunction expansions for self-adjoint operators and analyze the question of when operators may be approximated in an operator norm by finite sums of multiples of eigenprojections of multiplicity one. The theory is designed for application to ordinary and partial differential equations; relationships between the abstract theory and differential equations are worked out in the paper. One motivation for the study is the question of whether these expansions are susceptible to computation on a computer, as is known to be the case for many examples in the discrete spectrum case. The point of the paper is that continuous and discrete spectrum eigenfunction expansions are treated by the same formalism; both are limits in an operator norm of finite sums.
ISSN:0161-1712
1687-0425