Enhanced Occupational Safety in Agricultural Machinery Factories: Artificial Intelligence-Driven Helmet Detection Using Transfer Learning and Majority Voting

The objective of this study was to develop an artificial intelligence (AI)-driven model for the detection of helmet usage among workers in tractor and agricultural machinery factories with the aim of enhancing occupational safety. A transfer learning approach was employed, utilizing nine pre-trained...

Full description

Saved in:
Bibliographic Details
Main Authors: Simge Özüağ, Ömer Ertuğrul
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/23/11278
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to develop an artificial intelligence (AI)-driven model for the detection of helmet usage among workers in tractor and agricultural machinery factories with the aim of enhancing occupational safety. A transfer learning approach was employed, utilizing nine pre-trained neural networks for the extraction of deep features. The following neural networks were employed: MobileNetV2, ResNet50, DarkNet53, AlexNet, ShuffleNet, DenseNet201, InceptionV3, Inception-ResNetV2, and GoogLeNet. Subsequently, the extracted features were subjected to iterative neighborhood component analysis (INCA) for feature selection, after which they were classified using the k-nearest neighbor (kNN) algorithm. The classification outputs of all networks were combined through iterative majority voting (IMV) to achieve optimal results. To evaluate the model, an image dataset comprising 662 images of individuals wearing helmets and 722 images of individuals without helmets sourced from the internet was constructed. The proposed model achieved an accuracy of 90.39%, with DenseNet201 producing the most accurate results. This AI-driven helmet detection model demonstrates significant potential in improving occupational safety by assisting safety officers, especially in confined environments, reducing human error, and enhancing efficiency.
ISSN:2076-3417