Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping

Using fixed point method and direct method, we prove the Hyers-Ulam stability of the following additive-quadratic functional equation 𝑟2𝑓((𝑥+𝑦+𝑧)/𝑟)+𝑟2𝑓((𝑥−𝑦+𝑧)/𝑟)+𝑟2𝑓((𝑥+𝑦−𝑧)/𝑟)+𝑟2𝑓((−𝑥+𝑦+𝑧)/𝑟)=4𝑓(𝑥)+4𝑓(𝑦)+4𝑓(𝑧), where 𝑟 is a positive real number, in non-Archimedean normed spaces....

Full description

Saved in:
Bibliographic Details
Main Authors: Hassan Azadi Kenary, Themistocles M. Rassias, H. Rezaei, S. Talebzadeh, Won-Gil Park
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2012/824257
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559877268963328
author Hassan Azadi Kenary
Themistocles M. Rassias
H. Rezaei
S. Talebzadeh
Won-Gil Park
author_facet Hassan Azadi Kenary
Themistocles M. Rassias
H. Rezaei
S. Talebzadeh
Won-Gil Park
author_sort Hassan Azadi Kenary
collection DOAJ
description Using fixed point method and direct method, we prove the Hyers-Ulam stability of the following additive-quadratic functional equation 𝑟2𝑓((𝑥+𝑦+𝑧)/𝑟)+𝑟2𝑓((𝑥−𝑦+𝑧)/𝑟)+𝑟2𝑓((𝑥+𝑦−𝑧)/𝑟)+𝑟2𝑓((−𝑥+𝑦+𝑧)/𝑟)=4𝑓(𝑥)+4𝑓(𝑦)+4𝑓(𝑧), where 𝑟 is a positive real number, in non-Archimedean normed spaces.
format Article
id doaj-art-03894c4bba0f49f8bc438c390f26195a
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-03894c4bba0f49f8bc438c390f26195a2025-02-03T01:28:58ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2012-01-01201210.1155/2012/824257824257Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic MappingHassan Azadi Kenary0Themistocles M. Rassias1H. Rezaei2S. Talebzadeh3Won-Gil Park4Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75914-353, IranDepartment of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, GreeceDepartment of Mathematics, College of Sciences, Yasouj University, Yasouj 75914-353, IranDepartment of Mathematics, Islamic Azad University, Firoozabad Branch, Firoozabad, IranDepartment of Mathematics Education, College of Education, Mokwon University, Daejeon 302-729, Republic of KoreaUsing fixed point method and direct method, we prove the Hyers-Ulam stability of the following additive-quadratic functional equation 𝑟2𝑓((𝑥+𝑦+𝑧)/𝑟)+𝑟2𝑓((𝑥−𝑦+𝑧)/𝑟)+𝑟2𝑓((𝑥+𝑦−𝑧)/𝑟)+𝑟2𝑓((−𝑥+𝑦+𝑧)/𝑟)=4𝑓(𝑥)+4𝑓(𝑦)+4𝑓(𝑧), where 𝑟 is a positive real number, in non-Archimedean normed spaces.http://dx.doi.org/10.1155/2012/824257
spellingShingle Hassan Azadi Kenary
Themistocles M. Rassias
H. Rezaei
S. Talebzadeh
Won-Gil Park
Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping
Discrete Dynamics in Nature and Society
title Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping
title_full Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping
title_fullStr Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping
title_full_unstemmed Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping
title_short Non-Archimedean Hyers-Ulam Stability of an Additive-Quadratic Mapping
title_sort non archimedean hyers ulam stability of an additive quadratic mapping
url http://dx.doi.org/10.1155/2012/824257
work_keys_str_mv AT hassanazadikenary nonarchimedeanhyersulamstabilityofanadditivequadraticmapping
AT themistoclesmrassias nonarchimedeanhyersulamstabilityofanadditivequadraticmapping
AT hrezaei nonarchimedeanhyersulamstabilityofanadditivequadraticmapping
AT stalebzadeh nonarchimedeanhyersulamstabilityofanadditivequadraticmapping
AT wongilpark nonarchimedeanhyersulamstabilityofanadditivequadraticmapping